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Summary 

Artificial intelligence (AI), defined as computers that behave in ways that, until recently, were 

thought to require human intelligence, has the potential to substantially improve all facets of 

radiology [1]. AI is complex, has numerous potential pitfalls, and is inevitably biased to some 

degree. This statement aims to inform a common interpretation of the issues and the ultimate 

goals of using AI-based intelligent and autonomous machines in radiology. Technology tilts 

people in certain directions. We hope to tilt the radiology approach to this powerful technology 

in the correct direction up front, and describe a path to aspire radiology AI’s builders and users 

to enhance radiology’s intelligence in humane ways to promote just and beneficial outcomes, 

while avoiding harm to those who expect us to do right by them.  

 

Intelligent and autonomous machines will make substantial clinical and workflow decisions in 

radiology. While this will mature into reliable and robust infrastructures, currently no one has 

substantial experience using such machines for rigorous patient care in diverse settings. This 

gives rise to potential errors with high consequences. We hypothesize what is important when 

using such machines, such as transparency and explainability, and we have rudimentary 

experience managing AI tools. We have much to learn, and extensive research remains to be 

done to understand how to use these machines in widespread clinical practice, and the 

operational characteristics they should have. 

  

Because developing AI-driven machines today requires massive amounts of well-labeled 

radiology data, the value of those data is skyrocketing and the drive to provide commercial 

access to radiology data will become overwhelming. Currently the best ways to allow, manage, 

and contract for that data access are evolving at a rate which outstrips our current knowledge 

or abilities. We are at risk of making expensive and calamitous mistakes with radiology data. 

  

In addition to the significant good which will come from using these data to make better 

predictions and improve patient health, there are many ways to unethically capitalize on data 

which may harm patients, other cohorts, or the common good. Limiting radiology AI to ethical 

uses means leaving money on the table. One of our greatest challenges is how to thwart those 

who will attempt to acquire this value. 

  

Patients, radiologists, and other cohorts in the radiology community are at risk of being 

engulfed by digital surveillance, and categorized and manipulated by intelligent and 

autonomous machines. Radiology and other medical data could be weaponized in the same 

way as data from non-medical sources.  
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Radiologists are experts at acquiring information from radiology images. AI can extend this 

expertise, extracting even more information to make better or entirely new predictions about 

patients. At the same time, we see daily the ways that AI potentially hurts both user and those 

on whom it is used, and harms the reputations of organizations and professions. People 

involved with each stage in an AI product’s life cycle must understand it deeply. They have a 

duty to understand the risks of the products they are using, to alert patients and stakeholders 

to those pitfalls as appropriate, and to monitor AI products to guard against harm. They have a 

duty to ensure not just that the use of the product is beneficial overall, but that the distribution 

of benefits among the possible stakeholders is just and equitable. We should realize that 

though most changes will be positive, AI will cause inescapable social and economic change, 

and major social changes such as these are often disproportionately bad for the most 

vulnerable communities. We must do what we can to avoid negative consequences and ensure 

that unavoidable or unexpected negative consequences are not made worse by unethical 

distribution. 

  

AI has dramatically altered the value, use, and potential of misuse of radiology data. 

Radiologists have a moral duty to use the data they collect to improve the common good, 

extract more information about patients and their diseases, and improve the practice of 

radiology. At the same time, they have a duty to not use data in ways that may harm or 

adversely influence patients or discriminate against them. 

  

Bias occurs to some extent with any dataset. This manifests in many ways, each of which 

deserves research and awareness to minimize the effects on the decisions made by AI models. 

  

The radiology community and relevant stakeholders should start now to develop codes of 

ethical practice for AI. Ensuring ethical AI requires a desire to gain trust from all involved. 

Effective regulations, standards, and codes of conduct will need to balance technical, clinical, 

population health, and commercial motivations with appropriate moral concern. Agencies will 

need to have the authority to enforce them. Key to these codes of conduct will be a continual 

emphasis on transparency, protection of patients, and vigorous control of data and algorithm 

versions and uses. AI tools will need to be monitored continuously and carefully to ensure they 

work as expected, and that the decisions they make enable optimal and ethical patient care. 

  

The radiology community is learning about ethical AI while simultaneously trying to invent and 

implement the technology. This is occurring amid technological evolution at a speed and scope 

which are difficult to comprehend. AI will conceivably change radiologists’ roles and positions, 

revolutionize how decisions are made about radiology exams, and transform how radiologists 

relate to patients and other stakeholders. 
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Introduction 

This statement arises from the multi-national radiology community’s desire to examine the 

ethics and code of behavior for AI in radiology. Our goals are to foster trust among all parties in 

radiology AI doing the right thing for patients and the community, and to see ethical aspirations 

applied to all aspects of AI in radiology. To encourage research on these topics, we describe 

ethical issues associated with designing and using autonomous and intelligent systems in 

radiology for the greater good of patients, understanding how they work, and avoiding harm by 

their use. To a lesser extent, we examine objectives for regulations and codes of conduct for 

this field. We illustrate the medical, cultural, and commercial factors which affect the 

confluence of AI, radiology, and ethics.   

 

Radiologists have years of specialized training to acquire the knowledge and skills necessary to 

analyze radiology images to discover intimate and often life-altering information about what is 

occurring inside their patients’ bodies. Patients, other customers, and the public rely on 

radiologists to make decisions based on imaging examinations. This unique decision-making 

capability creates a hierarchy of authority between radiologists and those who rely on them. 

Radiologists’ professional code of ethics aims to ensure that the authority wielded by 

radiologists leads to moral outcomes. AI and machine learning (ML) are statistical methods that 

will increase the information radiologists can extract from radiology examinations, enrich 

radiology decision-making, and improve patient care in radiology.  

 

Going forward, conclusions about images will be made not just by human radiologists, but in 

conjunction with intelligent machines. In some instances, the machines may make better 

decisions, make them more quickly or efficiently, or contradict the human radiologists. AI will 

affect image interpretation, the what and how of reporting, how we communicate, and how we 

bill for services1, 2. AI has the potential to alter professional relationships, patient engagement, 

knowledge hierarchy, and the labor market. Additionally, AI may exacerbate the concentration 

and imbalance of resources, with entities that have significant AI resources having more 

“radiology decision-making” capabilities. Radiologists and radiology departments will also be 

data, categorized or evaluated by AI models. AI will deduce patterns in personal, professional, 

and institutional behavior. AI is transforming traditional thinking about radiology data  how 

‘truthful’ and ‘ethical’ are the data, who owns them, who has access to them, who knows what, 

and how they use that power. 

 

While AI promises to improve quality, patient outcomes, and efficiency, and decrease costs, it 

will also produce new possibilities, consequences, and questions for both patients and the 

radiology community. These issues will be shaped as much by the community’s ethics as by 

technical factors. Other effects will be more indirect, such as algorithms that make enterprise 
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or public policy decisions, or find patterns in the data of large populations to improve public 

health and our understanding of diseases and treatments.  

 

Given its potential benefits, we feel there is a duty to actively pursue AI and use it to improve 

radiology. But to ensure the safety of patients and their data, AI tools in radiology need to be 

properly vetted by legitimately chosen regulatory boards before they are put into use.  New 

ethical issues will appear rapidly and regularly, and our appreciation of them will change over 

time. Thus, while it is important to consider the ethics of AI in radiology now, it also will be 

important to reassess the topic repeatedly as our understanding of its impact and potential 

grows and to return to the AI tools being used in radiology to assess whether they meet the 

updated regulations and standards. 

 

At the start, most radiology AI will consist of intelligent clinical decision support models 

integrated into radiologists’ workflow, such as measurement tools or computer assisted 

detection (CAD) already in use today. Increasingly, however, AI agents will be autonomous, and 

make decisions and initiate actions on their own, without radiologists’ supervision.  

  

Extrapolating from other industries and looking far into the future, AI-enabled radiology will 

mature into a complex environment containing dynamic networked systems3. These intricate 

webs of autonomous algorithms will be like multiple radiologists each making decisions about 

one focused portion of an exam. Depending on their consensus, they will then pass the 

examination to other groups of autonomous algorithms, which, in turn will make decisions on 

other parts of the exam. Complex, web-like cascades of these decision-making computers will 

accept and transmit information to each other, and the decisions made will change over time.  

 

Dynamic networked systems for radiology have barely been conceived, and are years from 

being designed or built. Much remains to be learned about how to assemble such systems in a 

robust, secure, accurate, and reliable fashion, or how to understand their “behavior”, or 

processing logic.  

 

Radiologists will remain ultimately responsible for what happens to patients and will need to 

acquire new skills to manage these ecosystems and ensure patients’ well-being. The radiology 

community needs an ethical framework to help steer technological development, influence 

how different stakeholders respond to and use AI, and implement these tools to make best 

decisions and actions for, and increasingly with, patients. We recommend that a committee 

representing each of the relevant stakeholders be assembled in the very near future and tasked 

with producing that framework. 
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Because some AI models are relatively easy to build and train, research and commercial AI-

powered solutions are being produced by a large number of sometimes naive or unprofessional 

actors. This increases the importance of extending existing ethical codes in medicine, statistics, 

and computer science to consider situations specific to radiology AI4–6. 

 

Many fields outside medicine, and medical societies, are evaluating the ethics of AI. Recent 

New England Journal of Medicine and Journal of the American Medical Association articles 

describe both the promise of AI7 and the acute need to address the potential for bias and 

questions about the fiduciary relationship between patients and AI8, 9. Leaders in computer 

science and engineering, including the Institute of Electrical and Electronics Engineers (IEEE), 

the Association for Computing Machinery (ACM), Future of Life Institute, and governmental 

bodies such as the European Commission’s Group on Ethics in Science and New Technologies, 

are updating their recommendations and guidance10–13. Many other professional, regulatory 

and academic bodies have published, or are in the process of preparing statements about 

ethical use of AI. Depending on the focus of the publishing body, the details of these 

statements concentrate on varying aspects of AI deployment and usage, but the commonality 

of principles among these statements is: 

1. Promote well-being, minimize harm, and ensure that the benefits and harms are 

distributed among the possible stakeholders in a just manner.  

2. Respect human rights and freedoms, including dignity & privacy. 

3.  Be transparent and dependable, curtailing bias and decision, while ensuring that the 

locus of responsibility and accountability remains with their human designers or 

operators. 

About this Statement 

This statement is a joint effort by the American College of Radiology, European Society of 

Radiology, Radiology Society of North America, Society for Imaging Informatics in Medicine, 

European Society of Medical Imaging Informatics, Canadian Association of Radiologists, and 

American Association of Physicists in Medicine. The core writing team includes an American 

philosopher, North American and European radiologists, imaging informaticists, medical 

physicists, patient advocates, and attorneys with experience in radiology in the U.S. and EU.  

 

In developing this statement, we reviewed current ethics literature from computer science and 

medicine, as well as historical ethical scholarship, and material related to the ethics of future 

scenarios.  In the interest of efficiency, our statement focuses on North America and Europe. 

We realize that other regions may have values and ethics which both overlap and differ.  
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This statement is intended to be aspirational rather than prescriptive. We aim to provide an 

approach to the ethics of AI that is easy to understand and implement. We expect this topic will 

change rapidly as technology and data science advances, and new legal approaches and liability 

descriptions evolve to deal with automated decision making. California’s new data privacy 

law14, 15 and the European Union’s GDPR16 and proposed Civil Law Rules on Robotics17 are 

harbingers of such legislation. People who build commercial and generalizable radiology AI 

tools need instructive ethical guidance; this statement will help inform future groups charged 

with composing such regulations. This statement provides a baseline for recommendations and 

ethical questions to consider when planning to implement AI in radiology.  

 

Ethical use of AI in radiology must respect the ethical principles of humanity, the protection of 

human subjects of biomedical and behavioral research18, and mandates of public reason. Some 

of radiology’s ethical issues are deep and difficult; in those cases, we try to raise awareness of 

what we regard to be the most pressing ethical issues, explain how the issues specifically 

involve radiology, and suggest factors the radiology community should consider. Where we 

identify ethical issues that pertain specifically to radiology with answers that are sufficiently 

clear, we will suggest strategies. 

  

This statement is structured using a process described by Floridi et al.,4. Ethics topics are 

divided into ethics of data, ethics of algorithms, and ethics of practice.  

Ethics of Data  

The ethics of data are fundamental to AI in radiology. Key areas of data ethics include informed 

consent, privacy and data protection, bias and data “truthfulness,” ownership, objectivity, 

transparency, and the gap between those who have or lack the resources to use large datasets. 

Other data issues include bias against group-level subsets based on gender, ethnic, or economic 

groups, the importance of trust in assessing data ethics, and providing meaningful and moral 

access rights to data5.  

 

AI has dramatically altered our perception of radiology examinations and associated data 

including their value, how we use them and how they may be misused. In addition to   

understanding AI, radiologists have a duty to understand the data. Radiologists and the 

radiology community have a moral duty to use the data they collect to improve the common 

good, extract information about patients and their diseases, and improve the practice of 

radiology. Radiologists are ethically obligated to make their data useful to the patients it was  

collected from. 
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Clinical radiology data 

An imaging examination typically consists of image data and associated labels19.  

 

Image data are produced by a piece of imaging equipment, and subsequently processed to 

generate human-viewable and -interpretable images. The raw data produced by the imaging 

modality cannot be interpreted by humans, and must be converted into collections of pixels, 

which we commonly refer to as an image. Pixels are the “dots” that form the images that 

humans evaluate. While the pixel data are saved, and often combined with additional meta-

data, raw data is usually purged after several days. In some instances, such as with ultrasound 

images, meta-data (such as patient information) can be embedded within the pixel data. This is 

commonly referred to as “burned-in” metadata. While most image-based AI efforts currently 

use pixel data, there are efforts underway to process raw data, as it sometimes holds more 

information than pixel data7. 

 

Labels add further context, information, and value to image data. They can be study-level 

descriptors (e.g., this is an abdominal MRI) or image-level descriptors (e.g., on image 36, these 

pixels represent the liver). The radiology report that accompanies the images and indicates the 

findings, interpretation, and diagnosis that results from the images commonly serves as a 

source of labels. Labels can include:   

 

● Radiology report findings, including Common Data Elements (CDEs)20 

● Image annotations, such as arrows, measurements, and regions of interest on 

the images 

● Extra labeling done specifically for data to be used for AI 

● Non-image clinical data, including documentation from the electronic health 

record (EHR), pathology, laboratory, genomics, and other data 

● Social media and other publicly available data, such as weather data and public 

maps 

● Other data generated by patients, the public and the Internet of Things (IoT) 

 

The performance of an image-based AI system depends on the diversity of the pixel data and 

the precision and accuracy of the labels. The radiology community can increase the quality of AI 

systems through standardization of annotations and measurements; traceability; data version 

control; documenting processes that alter, move, or store data; and correlation to patient 

outcomes and related meta-data19. 
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Business operational and analytic data 

Business operational data include data on customer transactions, employee tasks, resource 

utilization, and business processes. Information technology (IT) operational data include 

information on what, and how well, technology components are operating. Business/IT analytic 

data include data about speed and accuracy of IT processes, security and risk of the business-

technological ecosystem, and measures of data integrity, validation, correlation, business 

efficiency, and productivity. Report turnaround time, relative value units (RVUs), scanner 

utilization, and quality measures are common examples of these data in clinical radiology. 

Pre-training, synthetic, and augmented data 

The performance of AI models improves as they are trained on more data. Excitement about 

the accuracy of AI models for perceptive tasks outside of medical imaging came from using 

datasets of millions or even tens of millions of images. By contrast, currently available radiology 

datasets for AI contain between hundreds to tens of thousands of radiology examinations. 

Thus, algorithms that drive radiology AI models are either typically pre-trained on large sets of 

non-medical image data, such as ImageNet (which has over 14 million labeled images of typical 

objects such as dogs, cars, and mountains), or use synthetic or augmented data21, 22. The 

process of applying models trained on one type of data to a different type of data is called 

transfer learning. 

  

One approach to expand data for training is to use fully or partially artificial data, commonly 

referred to as synthetic data. Synthetic data are generated at least in part by statistical 

programs to randomize their features. Once the model to produce them is developed, 

generating synthetic data is fast and inexpensive. Synthetic data are useful for pre-training23. 

Risk of potential compromise of patient data with them is minimized, since the data are not 

obtained from real patients. For radiology, synthetic data can mimic rare diseases, allowing the 

algorithms to train on more exams showing the pathology when such exams are hard to obtain 

from patients. They are also useful for researchers, when no data exist, or to generate data to 

test and verify AI products.  

 

Synthetic data are often used as adversarial images in adversarial networks (GANs), a class of AI 

algorithms24. While these images appear to simulate pathology precisely and can increase the 

overall accuracy of the trained model, there is little research or understanding of their effect on 

real-life settings. Synthesized models of pathology may perpetuate imperfect understanding of 

pathology and may be inaccurate. Also, because AI models can potentially pick up subtle 

features, synthesized images can introduce artifacts imperceptible to humans that may affect 

AI model training in ways we may not be able to appreciate. Until more is known about effects 
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of using synthetic data for training, anyone and any vendor using GAN-generated images for 

data augmentation needs to disclose their use.  

 

Augmented image data are real data that are copied, with each copy altered in some way to 

make it different25. Common augmentations include rotation, flipping, translation, resizing, 

adding noise, or sharpening. Augmented data are useful when the algorithm to be trained can 

identify the object despite such changes. Often, augmented data are easier to generate than 

synthetic data, though augmented data may still have privacy and data use restrictions. Data 

augmentation techniques and use require caution. What appears to be a benign method of 

rotating images can have unintended negative consequences if not thought out carefully. For 

example, a patient with pneumoperitoneum on an upright radiograph, if rotated, can give false 

data to the training process because a decubitus radiograph of pneumoperitoneum appears 

quite different than an upright image turned 90 degrees. Details of any data augmentation used 

during algorithm training should be made available to users. 

 

Synthetic and augmented data help fill in gaps in real data and are useful to improve reporting 

and selection biases. They may also exaggerate bias26 however, if they duplicate or reinforce a 

systemic bias in the baseline data used to generate them.  While these data are useful to train 

algorithms, much more research is needed to understand the ramifications and limits of using 

large amounts of artificial data in radiology and the criteria for their use.  

Raw image data 

Raw data are usually proprietary to companies that build imaging equipment, such as CT 

scanners. They are largely uninterpretable by humans. When digital radiology first appeared, 

digital data storage was expensive. As such, only data in forms thought to be clinically useful 

were saved, and the raw data was rarely saved for more than a short period after images were 

acquired and interpreted. Theoretically, AI can find features in raw data more robustly than 

from data that have been processed into human-interpretable images. Because of this, the 

radiology community is increasingly recognizing the value of raw data. Patients, industry, and 

researchers will benefit if raw image data are saved and made accessible in addition to 

traditional, post-processed image data19.  

Data ownership 

Health care entities collect and protect patients’ medical images and associated health 

information. Now, with robust methods to share data electronically and the need to aggregate 

data for AI, medical imaging data are increasingly being shared among radiologists, other health 

care workers, institutions, and even countries. Ethical and technical issues to secure data are 

complicated, especially as ethical norms and laws vary among countries. This complexity and 
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variation hinder sharing of patient data for clinical care, AI research, and commercial 

development.  

On the surface, “Who owns patient data?” is a concept that radiologists, the greater medical 

community, and regulatory bodies have already addressed. Data ownership varies among 

countries. In the U.S., the entity that performs the imaging becomes the owner, though 

patients have a legal right to a copy of the imaging data. While practices are heterogeneous, 

many hospitals include permission to use data retrospectively for research in their general 

consent to treatment, which has been shown to be accepted by patients27.  In the U.S., federal 

law does not require consent for de-identified retrospective studies as defined in the following 

excerpt from 45 CFR 46 (2018 version) 

(ii) Information, which may include information about biospecimens, is recorded by the 

investigator in such a manner that the identity of the human subjects cannot readily be 

ascertained directly or through identifiers linked to the subjects, the investigator does 

not contact the subjects, and the investigator will not re-identify subjects18 

By comparison, in the EU, the General Data Protection Regulation (GDPR) specifically states that 

patients own and control their sensitive, personal, and/or identifiable data (both medical and 

non-medical). The GDPR requires explicit patient consent to reuse or share data, and patients 

may withdraw their consent at any time16.  Each EU country has a national body responsible for 

protecting personal data28. A new EU-based initiative is actively asking patients to donate their 

data after undergoing an imaging exam and securing a diagnosis29.  Sites where radiology 

examinations are performed are also subject to ownership and copyright regulation, suggesting 

that approval to use radiology data will require approval by both patients and imaging facilities. 

In Canada, similar to the U.S., health care providers that produce medical images own the 

physical record, and patients have a right to access it [30]. Health care delivery is under 

provincial rather than federal jurisdiction, and varies between Canadian provinces31, 32. The 

recent Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans33 states 

that “consent is not required for research that relies exclusively on secondary use of non-

identifiable information,” a position held by Canada's largest research agencies.   

 

While legal discussions on data privacy and ownership are outside the purview of this 

statement, they illustrate the need for new discussions on who owns what data; and if data are 

transferred, used and reused, who pays whom for what. In other words, might the owner of the 

imaging machine own the pixel data, while the radiologists own the labels they generate, 

including reports, annotations, or other information they contribute to the value of an exam? 

Until recently, most medical image data sharing and aggregation was for research purposes, 
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and governed by mature policies. As medical image data become commercially traded entities,  

if the their value comes from having both pixels and labels and that bundle is significantly more 

valuable than either part separately, who receives that value is yet to be determined.  

Data sharing and data use 

From search engines to word processors to digital assistants, the dislocation of data value has 

disrupted the business model. Traditional products are built less to provide services and rather 

as portals to collect, capitalize on, and profit from data. This paradigm has the potential to 

occur in medicine and radiology.  

 

As medical data become more valuable, the line between academic and commercial uses of 

data is blurring. For example, suppose a hospital sells exclusive rights to their imaging data to a 

company hoping to build an AI product. Since patients also retain the right to access their data, 

may they, in turn, sell their data to another company that wants to build an AI product? Or may 

they refuse to share their data for commercial development but allow it for non-profit 

research? Many governmental and other funding sources now require applicants to share their 

data, so how will this be reconciled with exclusive data use agreements? Legislators and 

regulators need to revisit the policies that concern the use of medical data in academic and 

commercial settings, finding an equitable balance between the interests of society at large and 

the interests of the individual patients who generate the data34.  

 

The skyrocketing value of radiology data is disrupting traditional data-sharing practices, and 

buying and selling of radiology data is becoming more common. The data are most valuable to 

those who can best monetize it, and there is reason to suspect that the people who are best 

able to monetize data will be those who are least morally scrupulous. Current examples of 

questionable data use in social media and other settings reinforce this suspicion. A model of 

self-governance, by those who own the data, is unwise. So long as radiology data are held 

privately, we will need regulators with the power to ensure that the outputs of those who own 

the data — not just algorithms and clinical products — properly take into account the 

associated moral risks.   

 

New deals for commerce in medical data may be influenced by naiveté or greed. For example, 

in 2015, the Royal Free National Health Service (NHS) Foundation Trust signed an agreement 

with DeepMind Health, giving the company access to 1.6 million personal identifiable records at 

no charge. It was suggested later that the NHS was “seduced by the magic of the algorithm 

company and in future should at least seek more control over the data and their transparency. 

What [the NHS] did not realize is that they were the ones with the really important thing, which 

is the dataset.”35 In general, people don't conceptualize their data as being valuable, and 

undervalue it. A necessary condition on consent is being informed. A patient can be taken to 
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have consented to let others use their data only if  they have been informed of how valuable 

those data are in monetary terms.  

 

Increasingly, companies anxious to obtain data are attempting to contract with people outside 

radiology, including administrators, and clinicians and researchers in other specialties. For 

example, they might approach a pulmonary or surgical research group to obtain images to 

develop products for those fields. Sometimes these contracts are discovered by the radiology 

department only in retrospect, and the contracts include access to data in perpetuity or for 

exclusive use. Thus education on ethical access to data, including radiology images, as well as 

internal regulations and enterprise policy for data access, should be promptly established and 

publicized to the entire medical enterprise.  

 

Social media demonstrates that substantial data value comes from its use in surveillance to 

build a deep and unfeeling profile of each person. Medical data is extremely valuable in this 

paradigm. Today we use robust “free” tools for internet search, email, document management, 

and social media image sharing in exchange for giving our data to companies that do with it 

whatever makes them money. Using this same business model, companies could potentially 

provide excellent “free” radiology AI tools, where the cost to use them is giving our medical 

data to them to use as they please. For example, one company today offers a free tool which 

enables people with little programming ability to build AI models36. 

 

Open, freely accessible radiology data offer benefits for the greater good of patients, society, 

and the economy. Several U.S. universities recently publicly released moderate to large 

datasets37, 38. During the 2018 annual meeting of the French Radiological Society (SFR), the 

foundation of an AI ecosystem (DRIM France IA) was announced. The idea is to build a qualified 

database of more than 100 million medical images within a period of 5 years, which can be 

used by companies willing to develop AI tools that will be made freely available to France’s 

hospitals and radiologists. At the least, countries should develop a consensus regarding what 

sorts of data sharing is legitimate, and develop guidelines on how data producers, owners, 

managers, and users may share data safely and equitably. Despite such efforts, it may be naive 

to expect most data owners to give away valuable resources for free. 

 

Release of information and data use agreements (DUA) are critical tools to ensure that data are 

used transparently and ethically. DUAs explicitly specify what the involved parties can and 

cannot do with a dataset, and how they must dispose of the data once the agreement ends. 

This is complicated, however, by the need for version control of data used to train, test, and 

validate algorithms. Should those data be saved and appropriately documented for the life of 

the algorithm, or possibly for some period related to the effect on a patient of any decision the 

AI product made? If the data are used for continued learning and downstream algorithm 
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descendants of the original or parent source, should the data be version controlled for that 

lifetime as well? 

 

DUAs must be updated regularly to reflect new uses of patient data. Data may be considered 

entities unto themselves. Data flexibility influences their value. The more they can be 

repurposed, combined, and shared, the more valuable they become. As these changes occur, 

each data state should be documented. DUAs may include limitations on certain instances of 

reuse to avoid breaches of privacy and biases in training algorithms. Subsequent DUAs need to 

include version control specifications, particularly when data are used to train, test or validate 

AI models. They will include new and more comprehensive rules for data reuse and intellectual 

property. The entities receiving the data should take responsibility to identify the origins of 

those data and fully understand the permissions and rules attached to them. It has been 

suggested that each patient sign a DUA with any third-party entity that contributes to their 

digital health record, to encode data quality, security and use for all contributors and users39. 

Another approach is dynamic consent, an electronic process which allows ongoing 

communication between researchers and research participants40. 

 

We specifically note DUAs that include exclusive use of data as unethical, because such 

agreements may remove a significant amount of useful radiology data from general use. They 

can exacerbate concentration of power and erode transparency. We should strive to make 

radiology data widely accessible, both legally and financially. This means that we should curtail 

exclusive data access contracts and that we should try to ensure that datasets — even those 

that have had substantial work done to increase their value, such as linking, cleaning, and de-

identifying, or being coupled with high-value labels — are capable of being accessed by entities 

with lesser financial resources. 

 

Institutional review board (IRB) requirements also need to reflect new uses for patient data. 

Some IRBs, particularly outside the U.S., waive consent requirements when they are not 

feasible or impede validation of a research study or AI model. When might patient privacy and 

consent not be absolute, and patient’s interests be overridden, when risks are low and there is 

a compelling public interest to use the data for the greater good41?  If this occurs, patients 

should be made aware. 

 

The need for a robust technical infrastructure to share and manage medical data is driving new 

supporting technology. Federated learning is an approach gaining wide favor, where a 

supervised learning algorithm is delivered to a health care institution which allows the data to 

stay inside the institution’s firewall42. This is probably the best way for an imaging site to 

control its own data. This approach requires each individual health care institution to have its 
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own algorithm-hosting infrastructure, and to prepare and label their data in a manner that the 

algorithm can accept.  

 

Blockchain models theoretically provide a strong, comprehensive method for individuals and 

entities to securely aggregate and easily access medical data across disparate sites43, 44. Details 

and issues of this technology are outside the scope of this Statement. 

 

In the interest of full transparency and trust, it would be beneficial to provide a framework to 

recognize the value of patient data and provide guidelines for different use cases. What must 

radiology do to gain patients’ trust that their data are being used appropriately? How should 

radiology help patients understand if they have any claim on the monetary or other value of 

their data? Claims on monetary value are based more on legal precedent than ethics, and vary 

by country. Most patients are willing to have their data shared45, and presumably trust it will be 

used appropriately. The purpose of data sharing, such as for research versus commercial 

product development, changes patients’ willingness to share data46. This may not hold in the 

future, however, if breaches in research data compromise patient privacy or as patients realize 

the monetary value of their data47.  This is a complex setting. Suppose a patient withdraws 

consent upon learning a research project in which they participated is now being 

commercialized. However, the FDA submission has already been completed, so now should the 

model be retrained without this patient's data? This will necessitate a new submission to the 

FDA under current guidelines. Thus, organizations may need to be more forthcoming with the 

possibility of commercial product development from research activities in the informed consent 

process. 

 

Increasingly, individual patient data are being collected outside of formal health care settings. 

Patients and the public may be invited to share29, 48, or even sell, their radiology examinations. 

Today there is no consensus on consent agreements or contracting rules for how these data 

may be used and reused, nor are there requirements to notify patients how their data are being 

used, or by whom or for patients to notify anyone about selling their data outside of health care 

settings. It may be possible for a patient to sell the same data to multiple parties, and thus 

contaminate test and validation datasets, or adversely introduce bias in training. 

 

Patients have large amounts of easily identifiable data outside of radiology. These include other 

medical data from their health record, pathology and genomics, data from mobile phones and 

personal health and exercise tracking devices, internet search history, socioeconomic data, 

location tracking, video cameras, and environmental data such as weather records. These data, 

many of which are publicly available, can theoretically be aggregated to provide broad and 

deep “360-degree” views of patients. These integrated data may enable more accurate 

diagnosis and treatment options for individuals, but they are nearly impossible to de-identify 
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and carry significant privacy risks. This is even easier when a patient has a rare or unusual 

disease. 

 

Patients seldom know where their data go. An important way to establish trust is through 

transparency. Making patients fully aware of an entity’s data practices, and ensuring that they 

can learn about, participate in, and in some cases even dictate the collection and use of their 

data, builds customer confidence and has the added benefit of greater brand loyalty. Doing this 

will also require the entity to understand its goals for sharing or reusing data. Some of this 

relies on context. If patients find their data used in a context where they do not expect to find 

it, the patient’s surprise can quickly change to mistrust.   

Data privacy  

The right to privacy has been defined as the right “to be let alone,” and to be free of 

surveillance by other people or entities49. In this setting, only authorized individuals should 

have access to patient data. All reasonable efforts should be made to preserve this privacy, 

particularly as data are reused and move through chains of ownership and responsibility. 

 

In the U.S., the Health Insurance Portability and Accountability Act (HIPAA) defines strict privacy 

policies for patient identifiers considered protected health information (PHI). Because of this, 

data often are de-identified or anonymized, which obscures or removes identifiers from health 

information before being used for research or commerce50. Medical images pose unique de-

identification issues. For example, images of the head and neck can be reconstructed into 3D 

models of patients that can be fed into facial recognition software51. Radiographs may 

incidentally include identifying information on bracelets or necklaces, or serial numbers on 

implanted devices such as pacemakers or defibrillators52. Ultrasounds may have identifying 

information burned into the image pixels. Radiology images also include extensive metadata, 

some of which identify the patient. Private DICOM tags, used in a proprietary fashion by 

vendors and therefore frequently undocumented, may unexpectedly hold information that 

identifies patients, institutions, or a patient’s disease.  

 

When one uses these data to extract features and train AI algorithms, the model may train on 

these data, and then may not work when those data are unavailable in other settings. De-

identification of radiology examinations requires additional steps beyond deletion and 

replacement of the content of DICOM tags, and may necessitate manual review of images by 

humans. Some academic centers in the U.S. prohibit public sharing of data until two individuals 

have manually reviewed and cleared each item to be shared. 

 

Despite de-identifying radiology exams and other medical data by rigorous traditional means, 

these practices are not absolute. Using a 360-degree approach described previously, entities 
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with expertise in manipulating massive data can likely re-identify just about any radiology 

exam53. It is technically feasible for a large social media company to gather data from 

smartphones and personal devices, along with online search history, and purchase and match 

these with health care data. They could then advertise to those individuals, or sell those data to 

insurance companies, hospitals, nursing homes and others. Radiology groups might find those 

data valuable to identify patients who need future imaging. This sort of all-encompassing 

information access further underlines the need for, and importance of, data security. Bad 

actors with access to medical data could extort patients about aspects of their medical history 

that they wish to remain private.  

 

Ethical practitioners will make data as private and secure as possible, while also being 

transparent that medical data may not ever be absolutely private. Perfect anonymization is 

challenging at best.  

 

Data used to train algorithms presents another new setting for data exposure. Commonly used 

deep-learning approaches often incorporate details about the training data. The algorithm’s 

behavior may inadvertently disclose these elements [54]. More nefariously, algorithms can be 

intentionally designed to leak sensitive data, a process known as intentionally back-dooring55. 

Thus, AI deployments may need additional precautions in addition to  normal institutional 

software acquisition security policies. 

Bias and data  

Bias is a systematic deviation from the truth. Bias caused by data occurs when the sampled data 

do not represent the truth. This is complicated because different settings may have their own 

truth, such as “truth” about one demographic group may not accurately represent truth of a 

different group, or in a different setting. Types of bias most common in radiology AI include 

reporting, selection, and automation. Automation bias will be discussed in the Ethics of Practice 

section.  

 

Reporting bias is when the reported, or presented, data do not completely represent the real 

world because data are selectively disclosed. In medicine, this may come from clinical data 

being more available for positive research findings, or from those same data being duplicated 

or over reported. On the other hand, data from negative studies are often under-reported. It 

also occurs when prototypical data are assumed, for example, describing bananas without 

noting their color as yellow, because it is assumed bananas are yellow unless otherwise 

noted56.  

 

Selection bias or sampling bias occurs when the sample does not represent the population 

accurately57. Often this is a result of using available or interesting data. Using data from one 
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institution to train an AI model, for example, may accurately represent the population of that 

institution, but not the more general population for which the model is intended. It may 

inadvertently discriminate against underrepresented subsets of the population58. 

 

Selection bias may occur overtly or inadvertently. For example, if all the images for a radiology 

AI algorithm on a particular disease come from a cohort based on a set of features different 

from what represents the entire population on which the algorithm will be used, it may 

systematically give the incorrect answer for individuals who do not match the training group’s 

features. Depending on the question to be answered, relevant features range from physical and 

health characteristics such as age, sex, sexual orientation, weight, height, race, and genetic and 

medical history to economic, ethnic, and educational features. Because AI often utilizes larger 

amounts of data and extracts features at a more granular level than humans, it is often difficult 

to know in advance which features of a training group may bias or otherwise result in a 

clinically unethical AI model. 

 

Dataset shift (DS), a subset of selection bias, is a significant barrier to widespread AI use today. 

DS exists in most radiology settings because image data used for training do not accurately 

reproduce the conditions of future imaging studies. This includes bias introduced by 

experimental design, such as the use of synthetic or augmented data. In other words, previous 

exposure to training is inadequate for the model to make accurate predictions in new 

situations59. While radiologists commonly notice and adapt to differences in images due to slice 

thickness, scanner brand, field strength, gradient strength, or contrast timing without affecting 

image interpretation, AI generally lacks that ability. For example, if an AI agent is trained only 

on images from a 3 Tesla MRI, it may or may not generate the same results on examinations 

performed at 1.5 Tesla. Similar situations exist for each of the parameters above. One approach 

to mitigate DS is to have comprehensive training, validation, and test sets representing every 

type of image data acquisition and reconstruction60, 61. A second solution is to develop 

mathematical processes to recognize, normalize, and transform data to minimize DS.  

 

In countries with few radiologists, applying AI trained on datasets from wealthy countries 

represents unique DS risks. For example, could an open source chest X-ray algorithm developed 

in Southern California produce harm during a SARS outbreak in rural Asia or Ebola outbreak in 

Africa? 

 

Some types of dataset bias occur commonly enough that algorithms can distinguish between 

different datasets. Manually selected data fundamentally include more bias than data chosen 

randomly or automatically. Curation bias may occur when humans can choose from which 

angles to take images, which commonly occurs in ultrasound. Negative set bias arises when 

datasets over-represent positive or otherwise interesting examinations. This is particularly 
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complex for radiology, where the vast majority of exams are normal. One then needs to balance 

collecting enough examples of pathology without aberrantly biasing the algorithm. When 

synthetic or augmented data are used to generate enough examples of rare pathology, they 

may inappropriately bias the dataset. 

 

Radiology data are often unbalanced, meaning they have many cases of some categories, 

particularly normal examinations, and few cases of pathology. In unbalanced datasets, 

categories may be undersampled or oversampled to improve model performance or runtime. 

This may introduce bias. 

 

Bias is sometimes thought of as ethically neutral, as a tendency to produce differential 

outcomes. In this scenario, bias could be beneficial. If health systems currently deliver subpar 

care to certain subpopulations disproportionately, there may be an opportunity to rectify that 

inequity using AI tools that prioritize good health outcomes for all patients or subpopulations. 

We believe, however, that it is best to think of bias as a negative thing, and the ethical 

approach in radiology AI is to minimize bias.  

Data labeling and ground truth 

AI models in clinical radiology today use supervised ML, where the model learns to match given 

labels to given images well enough that when the model sees new images, it accurately predicts 

what label to match to the new images. This is most useful when labels match ground truth, 

which is the truth about the state of the patient and the patient’s pathology or lack thereof.   

 

Defining ground truth in medical imaging is problematic. For example, an AI model could be 

trained to recognize a fracture of the scaphoid bone in the wrist. The ground truth labels to 

train the AI model may come from a radiologist labeling the images as yes or no for fracture. 

Some fractures are too subtle to see on the initial examination, or the fracture might be visible 

but missed by the radiologist. For the clinical setting of a question of fracture of the scaphoid (a 

small but significant bone in the wrist), if the initial X-ray is read as normal and the patient still 

has pain two weeks later, the exam is repeated to look for a fracture which may have been 

occult initially but typically easier to detect on the later exam. Would the initial report be 

accepted as ground truth, or in this case would ground truth include a check to see if repeat X-

rays were done later, and what they showed? In other words, what clinical outcome is most 

important? For some radiology examinations, the ground truth label will come not from a 

radiology report, but rather from a combination of subsequent imaging, physical exam findings, 

surgical outcomes, pathology results, genetic analysis, and other clinical data.  

 

Not only will a radiologist fail to label 100 percent of examinations correctly, they may label 

exams differently the next day, or from another radiologist. Ground truth using qualitative 
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scoring by a single expert may be confounded due to this intra- and inter-observer variability. 

Interpretation by more than one radiologist improves label accuracy62. If three radiologists 

were to evaluate each examination, one could formulate ground truth from their majority or 

consensus interpretation; in practice, this is prohibitively expensive.   

 

Alternatively, semi-quantitative scoring systems can be developed to determine an imaging 

ground truth, with rigorous rules set out in scoring atlases and with assessments performed by 

multiple readers. Formal techniques to evaluate image-based scoring systems such as these 

include the OMERACT Filter63. An AI system might be deemed successful if it performs at least 

as well as other human expert readers at one of these scoring tasks. For the scaphoid fracture, 

a semi-quantitative grading system might assign a score based on features such as cortical 

interruption, presence of lucent line, change in bone density, and how the other wrist bones 

are aligned.    

 

This illustrates the multiple challenges in defining the ground truth labeled data to train AI 

algorithms. What should it be based on, and who should determine that? To avoid deep-seated 

biases, the answers will depend on the specific task, and need to be carefully considered and 

defined a priori.   

 

An ethical approach suggests one should weigh the need for improved ground truth labels 

against the feasibility and cost, and provide transparency about how ground truth is 

determined for each dataset. This suggests that radiology and medicine would be well-served 

by standards for discovery and reporting of dataset bias. The radiology community should ask 

questions about their data, and be transparent about the data evaluation process and the 

answers to these questions. This is particularly important when using publicly available datasets 

for training, as researchers may be unaware of assumptions or hidden bias within the data.  

 

When an AI model is implemented, those responsible should be able to answer these 

questions, and other similar questions, about the Ethics of Data: 

 

● How will we document and notify patients about how data are used, both by us and 

others? 

● How do we document data used to train an algorithm, including descriptors for features 

traditionally associated with bias and discrimination.  

● How and by whom are labels generated? What bias might arise from the processes 

used? 

● What kinds of bias may exist in the data used to train and test algorithms? 

● What have we done to evaluate how our data are biased, and how it may affect our 

model? 
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● What are the possible risks that might arise from biases in our data, what steps have we 

taken to mitigate these biases, and how should users take remaining biases into 

account? 

● Is our method of ground truth labeling appropriate to the clinical use case we are trying 

to resolve? 

Ethics of Algorithms and Trained Models 

At its core, AI employs classification systems to come to a result. The first and perhaps simplest 

approach to AI is formal logic: “If an otherwise healthy patient has a fever, then they may have 

an infection.” A second approach is probabilistic, or Bayesian, inference: “If the patient has a 

fever, adjust the probability they have an infection to X%.” A third approach generalizes from 

similarities to make new predictions: “After analyzing the records of patients whose 

temperature, symptoms, age, and other factors mostly match the current patient, X% of those 

patients had an infection.” A fourth approach, neural networks, mirrors the function of a 

neuron): “If enough signs and symptoms match a specific pattern of previously labeled data 

within a model, then classify as diagnosis X.”  

 

Machines making decisions  
 

Decision-making is the selection of a belief or a course of action among multiple alternatives. 

The decision may trigger an action. Human decision-making is the process of choosing 

alternatives based on the person’s knowledge, values, preferences, and beliefs. AI agents 

choose alternatives based on features in the input data. For supervised learning, the algorithm 

chooses that alternative based on prior training to match data features to labels. It is within the 

labels where human values, preferences, and beliefs may be transferred to the model. This is 

where human bias may manifest.  

 

While AI performs well with classification tasks, it is a machine, not a human, and does not 

calculate fairness or equality12. Fair is not an AI concept. Responsibility for these concepts falls 

to humans, who must anticipate how rapidly changing AI models may perform incorrectly or be 

misused, and to protect against these possible outcomes, ideally before they occur64. 

 

AI models consist of the algorithm and the data on which they were trained. To reconstruct 

algorithm development and testing requires saving, or having the ability to reconstitute, exact 

versions of the datasets used. In theory, AI models can be built to change continuously based 

on learning from new data. Current AI models are trained on a carefully crafted dataset, and 

then halted while used clinically. If the model is responsible for a high-risk decision, it is unclear 

if incremental benefits from continuous training will outweigh the risk of unintended 
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performance declines. This version control process of freezing and documenting each working 

version of a model is standard practice, but until now such rigor has not applied to data 

associated with producing an AI model. Similarly, other common software quality control 

policies and best practices for ethical software management may now apply to data. This is a 

critical issue, as it will be almost impossible to find root cause and provide corrective action for 

performance failures without knowledge of exact data used. This has important implications for 

both federated learning and transfer learning, not only due to issues of data accounting, but 

also because the regulatory framework may prohibit postmarket model improvements or 

model training on private data. 

 

Radiology should start to prepare for the following type of scenario. Suppose Hospital A decides 

to purchase an FDA-cleared lung cancer AI model from vendor ABC that has a very high 

published accuracy. However, when installed, Hospital A obtains much less accuracy using its 

own data, and wishes to retrain using those data after purchasing the model. Should Hospital A 

be allowed to do this? Should the vendor allow it? Should the vendor have the option not to 

allow retraining? Is the vendor liable for this modified AI model or does this void any warranty? 

Suppose the vendor allows sites to retrain on their own data. Thus, multiple hospitals might 

then have unique versions of the software. Is each hospital responsible for their own version 

control? What happens when the vendor releases a new version? We may need a mechanism 

with standard infrastructure and documentation methods to maintain version control not only 

of the vendor’s parent product but of all descendant models, whether from the vendor or those 

modified locally. 

 

For the foreseeable future, radiology AI will be based on well-curated datasets and code 

freezes. AI is theoretically best when allowed to learn continuously. At some point in the future 

as we gain more experience with how AI models fail, and how to monitor them, new processes 

and regulations will arise which enable continuous learning. 

Algorithm selection  

The first steps of developing any AI solution are: understanding the training data, defining 

model assumptions, and critically evaluating for bias. Choosing an algorithm depends on the 

size, quality, and nature of the data, available computational time, and the task to be 

performed. Some algorithms work better with smaller sample sets, while others require 

numerous examples. For image recognition purposes, convolutional neural networks (CNN) 

have shown some of the most promising results. Developers select algorithm structures (e.g., 

linear vs. non-linear) based on assumptions or analysis of the training data. Ethical issues, 

beyond understanding which algorithm type best suits the situation, include consideration of 

what algorithm might give the most useful output for patient care, balanced against limited 

computing resources or the amount and type of training data available.  
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The objective of a model can also introduce bias. When selecting trained models, radiologists 

should consider possible unintended consequences, and evaluate the fairness of the model’s 

performance across the real-world data of multiple patient groups. This is best done by 

ensuring that data the model will analyze in practice matches the training and test data used to 

validate the model’s performance. This process is like applying evidence-based medicine 

principles when considering the results of a diagnostic test or choosing a treatment. 

  

Due to lack of adequate personnel to develop and train AI algorithms and increasing algorithm 

complexity, a new field of automated ML algorithms is developing. These allow domain experts 

with limited technical computer science skills, such as practicing radiologists, to build and train 

AI. While this has potential to improve democratization of AI, unskilled trainers may be 

unaware of complexity and potential pitfalls of AI models. As radiologists become increasingly 

responsible for creating and supervising AI, they should learn enough to understand not only 

how to optimize algorithms, but also the ways in which those algorithms may be unethical, 

biased, or otherwise not work as intended. This topic requires complex mathematics and 

statistics which in general is outside of radiologists’ knowledge. They should acknowledge this 

and involve appropriate experts. 

  

This review is largely focused on image analysis with neural networks and deep learning. Many 

other types of machine learning algorithms are available, which may be appropriate in different 

situations, and entirely new classes of algorithms are being developed. Some of those may soon 

displace deep learning for image analysis. 

Algorithm training 

Once an algorithm has been trained on a dataset, it is known as an ML model. This step by itself 

may introduce bias, as the algorithm inherits decisions made from data selection and 

preparation. To minimize bias (particularly dataset shift) and maximize benefits for patients, it 

is critically important to train models with datasets that truly represent data the model will see 

when it is installed in multiple disparate radiology practices. Often this requires training across 

multiple institutions and diverse datasets. One helpful approach is the previously described 

Federated learning method to share models between institutions, including their weights and 

parameters. This may be a good option since models are not governed by patient privacy 

regulations and data can remain inside an enterprise’s firewall.   

Model evaluation and testing  

Once the model is trained, it is tested with different data to see how well it works, and 

potentially how it handles atypical input data or data that it would not be expected to process 

well. Model testing includes selecting the right test data, defining metrics to evaluate model 
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results, and determining who performs testing. Model evaluation may include both a validation 

phase and a testing phase. During validation, data different from the training set are repeatedly 

shown to the model and it is refined. However, the eventual testing phase should present a 

third, separate dataset to which the model has not been previously exposed, and it is the 

model’s performance on this dataset that should be reported. 

 

For any supervised technique, the choice of ground truth against which the AI model is to be 

evaluated must be selected, potentially including imaging features and/or outcomes as 

discussed above in Ethics of Data. Even after ground truth has been selected, ethical difficulties 

arise. For example, when faced with clinical situations where there is a high level of uncertainty, 

humans tend to err on the side of caution, evidenced in a study in which it was difficult to 

separate benign and malignant skin lesions, with doctors over-diagnosed malignancy65.  

 

During the testing process, data should be checked to ensure it matches the deployment 

context. It may be necessary to perform baseline statistics on the training and testing data to 

understand disease distribution. The confusion matrix defined as (TN + TP + FP + FN) is 

commonly used for binary classification problems (Figure 1). 

 

  Prediction 

  Yes No 

Truth Yes TP FN 

No FP TN 

 

 

Figure 1. Confusion matrix showing the instances in a predicted class versus instances in the 

actual class. From this table, it is easy to see how often classes are mislabeled. TP=true 

positives, TN=true negatives, FP=false positives, and FN=false negatives.  

 

For thorough testing, different classes/groups should be assessed to model performance. For 

example, there should be a confusion matrix for the general population, one for females, 

another for males, and so on — to ensure that any gender bias shows. The testing dataset for 

the model should have demographic parity, where every test subject has an equal chance of 

being selected. It should also have predictive parity, where subjects’ predictions have an equal 

chance of a positive predictive value truly belonging to the positive class66. In practice, it may be 

difficult to get a balance of all four components of a confusion matrix. Hence, other elements of 

the confusion matrix, like the false positive and false negative rate balance, should be 
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considered. New metrics like equalized odds allow model testing to satisfy the false positive 

and false negative rates. 

 

Radiologists faced with a diagnostic dilemma commonly understand the cost of under- and 

over-diagnosis, and weigh these factors in their decision-making. For instance, a radiologist 

reading a chest radiograph with equivocal findings for abdominal free-air will sacrifice 

specificity due to the clinical consequences of missing pneumoperitoneum. While impacts such 

as adverse events or social factors are not easy to model or assess, ethical algorithm creators 

should strive to measure algorithm performance in true application beyond simple accuracy. 

Often this will require more sophisticated statistical analysis than the typical area under the 

curve (AUC) calculations derived from the TP, TN, FP and FN. 

 

In light of the known legal, privacy, financial and other resource challenges of access to data, 

developers may opt for the minimum model training required for FDA certification. The 

relationship between a legally certified model and a model that functions robustly, correctly, 

and ethically in the wild is still to be defined. It may well be that, at least to start, legal 

certification may not equate to a radiology AI model being safe or clinically useful. 

 

Beyond technical testing and validation, models will need clinical validation. How do they work 

in production, on real, new, patients? In general, models provide discrete predictions, while 

patients are distributed across a continuum. Models will need to show they are clinically useful 

and clinically ethical when confronted with real people the model has not seen previously. 

Transparency, interpretability, and explainability 

Transparency, interpretability, and explainability are necessary to build patient and provider 

trust. When errors happen, we investigate the root cause and design systems to eliminate the 

potential for similar errors in the future. Similarly, if an algorithm fails or contributes to an 

adverse clinical event, one needs to be able to understand why it produced the result that it 

did, and how it reached a decision.  

 

Some types of AI commonly used in radiology, such as artificial neural networks, are “black 

boxes,” and historically it has been problematic to understand why they make specific 

decisions. This black box approach is problematic for patient care, where decisions potentially 

have high consequences. It must be acknowledged that the workings of the human mind also 

represent a “black box”, to some extent. Nonetheless, a human radiologist will usually be able 

to explain a line of thought that led to a conclusion. A similar level of traceability is also 

necessary to ensure confidence in AI-based decisions. It is always important to note that an AI 

product is not human; it is a computer program envisioned, built, and monitored by humans.  
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Interpretability is the ability to understand the workings of an AI model. Explainability is the 

ability to explain, in terms that a person understands, what happened when the model made a 

decision. Explainability includes understanding why a model made a particular decision, or 

appreciating conditions where the model succeeds and where it fails. Explainability includes 

both comprehending technical aspects of algorithm structure and how outputs are presented 

to the user [67]. In complex networked systems of AI models, users may be other AI models 

further downstream in a cascade of decision-making machines. Explainable AI (XAI) has been 

recognized as a core area of research, with funding opportunities from agencies such as the 

Defense Advanced Research Projects Agency (DARPA68.  

 

For a model to be transparent, it should be both visible and comprehensible to outside viewers. 

How transparent a model should be is debatable. Transparency might make it more susceptible 

to malicious attacks, or reveal proprietary intellectual property. Furthermore, imposing a wide 

definition of transparency could jeopardize privacy by revealing personal data hidden in 

underlying data sets. In general terms, the more transparent AI is required to be, the less 

complex it can be. This may impose limits on its performance69.  

 

Even if we can “look under the hood,” the ML process often is extremely complex, with up to 

billions of parameters and complex mathematical operations. Pinpointing a causative bug in 

such a system is a daunting task70. A more practical approach may be to advocate for 

visualization and explainability. 

 

The GDPR states that automated decision-making systems that have significant impact on a 

person are not permitted without that person’s consent16, 71. It also states that the individual 

has the right to an explanation of how the automated decision was arrived at, and the 

consequence of that decision72. This has been interpreted to mean that AI decisions should be 

able to be rationalized in human-understandable terms73. However, this “right to explanation” 

is, of necessity, limited. The European Council Data Protection Working Party interprets this as 

conferring a right to the envisaged consequences of a process, rather than an explanation of a 

particular decision74. 

 

The radiology community should create guidelines for explaining as well as assessing AI models. 

These guidelines will need to consider the variety of clinical applications. For example, AI built 

into an MRI scanner to decrease scanning times will have different impacts on patients, and 

potentially different technical pitfalls, than image analysis algorithms. Considering the GDPR 

definition, is decreasing scan time a decision that has a “significant impact” requiring patient 

consent? Does every image analysis AI decision have a significant impact?  
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It is unclear how much of an AI solution's inner workings radiologists have a duty to assess 

before applying the AI in patient care, and just how transparent AI vendors should be regarding 

the inner workings of their product. May a vendor supply a canned explanation of what its AI 

models do, or does each radiologist need intimate knowledge of the model and the ability to 

explain it clearly to the patient? What represents an adequate explanation? 

 

In many instances, where AI is used to augment medical decision-making, and a human 

physician has final authority, there will be no legal requirement to explicitly inform patients of 

the use of AI in their care. Conversely, where AI represents the principal point of contact 

between a patient and health care (e.g. AI tools directly offering advice, or triaging patients for 

care), patients should be clearly made aware they are dealing with an AI tool69.  

Open source software 

To verify published research on radiology AI requires access to the algorithms discussed. This 

open source software (OSS) approach has been used for other fields and software. OSS has its 

own ethical issues, outside the scope of this statement. This includes resource consolidation, 

potentially biased and exclusionary groups producing it, and internally code-focused 

approaches75, 76. Strengths of the OSS approach include transparency, access to code, and 

potentially more robust and secure code.  

Replicability 

AI models should be replicable; the model should give the same or better result if given the 

same input. While this seems obvious, it is in contrast to humans, who commonly exhibit both 

inter- and intra-observer variability. The standard for an ML model should at a minimum match 

expert human performance. Replicability is problem-dependent, and the amount of variability 

depends on the specific task at hand.  

Algorithm bias 

Computer-assisted decisions are dependent on the quality and accuracy of the data upon which 

they are derived. As described in detail above, any bias in the data will have an impact on the 

outcome, much the same way that humans can only base decisions on their own previous 

learning. 

 

Implementing ethics of AI within medical imaging is dependent on the continuous verification 

of both the data and models. Deployed models will need to be monitored and re-tuned if a 

source of bias or new information are identified. There is an opportunity to invite diverse 

stakeholders to audit the models for bias. Mechanisms should be put in place to monitor user 
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reports and user complaints. Before model deployment, training data should be matched with 

deployment data. The metrics for performance should be thoroughly tested and used to inform 

real-life performance. 

Security 

Adversarial attacks are well-known in other AI domains, and the radiology AI community is 

becoming aware of them77–80. Currently, radiology as a field has no defense against such 

attacks. While potential solutions may exist, this weakness must be acknowledged and 

addressed. It will become increasingly important for AI models to be incorruptible and robust 

against malicious manipulations and attacks. 

 

When an AI model is implemented, those responsible for any part of its lifecycle should be able 

to answer these and other similar questions, about the Ethics of Algorithms: 

 

● Are we able to explain how our AI makes predictions?  

● How do we protect against malicious attacks on AI tools and/or data? 

● How do we create sustainable version control for AI data, algorithms, models and 

vended products? 

● How will we minimize the risk of patient harm from malicious attacks and privacy 

breaches? 

● How will we evaluate trained models before clinical application, for clinical 

effectiveness, ethical behavior, and security? 

● How will we monitor AI models in clinical workflow to ensure they perform as predicted 

and that performance doesn’t degrade over time? 

Ethics of Practice 

Radiology AI is a complex ecosystem of clinical care, technological and mathematical advances, 

business and economics. Moral behavior, doing the right thing, can be intellectually uncertain. 

We see daily how technical innovation crosses into unprincipled activities, and even if 

unintentional may cause considerable harm to patients, society, and our own reputations. 

Conscientious ethical values should guide decisions about where to apply AI, define metrics to 

describe appropriate and responsible AI, and recognize and alert the community to unethical 

AI. 

 

At minimum, how do we evaluate and ensure that data obtained from patients and others is 

used in ways that benefit those from whom it is acquired? Do the data accurately reflect the 

appropriate cohort? Is the result of the AI fair? Does the result discriminate or harm anyone, 
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and if so, how and to whom is that made known? Do we share our technical insights with 

regulators, and inculcate ethical compliance into our practice and regulations? Are we able to 

explain how our AI makes predictions?  

 

Radiology AI will exist in a much larger AI ecosystem. Changes to radiology may well change 

how a hospital is run, how hospitals are designed and built, and relationships between 

radiologists and patients, other physicians, administrators, IT staff, insurers and regulators. AI 

induced changes to the hospital and health care operations will also impact how radiology 

department and radiologists work. Radiologists with informatics expertise will be in high 

demand , and play key roles in radiology and hospital hierarchies. Ethical training must be 

prominent in the informatics radiologist’s toolkit.  

 

Many of the decisions that will be made about radiology AI will be made by others in business 

computer technology. Those people live in entirely different worlds from medical doctors. 

Business people are in the business of making money. Tech people are in the business of 

making machines better, faster, and easier to sell. Neither group are in the business of making 

patients better. For ethical radiology AI to succeed it must consider these goals.   

Computer - human interaction: Keeping humans in the loop 

The Institute of Electrical, and Electronics Engineers (IEEE) recently stated that autonomous and 

intelligent systems “should always be subordinate to human judgement and control,”12 which in 

the radiology context will ultimately fall to radiologists. This is certainly one way to approach AI, 

though it fails to acknowledge the potential ability and significant benefits of autonomous AI 

tools. 

  

The doctor-patient relationship is predicated on trust. As medicine increases in complexity, 

trust extends from individual providers to larger health care institutions. As health care 

institutions and individual practitioners implement AI, maintaining transparency will be 

important to maintain trust6. 

 

It is ethical to be transparent with patients and all stakeholders when a decision is made by, or 

heavily influenced by, an algorithm. This raises intriguing issues about how to have a shared 

decision-making discussion with patients when AI is another party in decision-making.  

  

Radiologists and institutions using AI in radiology should be transparent with patients about 

what is happening to them and their data. Patients should be made aware of: 

 

● The ways in which humans oversee the decisions made by AI 
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● How AI is being used in diagnoses and medical recommendations, and what controls the 

institution has put in place to assess, validate, and monitor the AI tools being used.  

  

Ethical oversight must extend beyond the end users of AI tools. Those responsible for 

developing, adapting and maintaining AI tools must also adhere to ethical principles12. Specifics 

of ethical behavior for those developing and maintaining AI tools may be different from those 

utilizing or implementing the tools. Equally, those whose interests are more-focused on 

economic gains from AI implementation such as practice managers and payers must be 

included in the ethical considerations and decision-making. Health care providers are already 

advertising perceived benefits of AI as a means of attracting patients. AI systems could very 

easily be programmed to guide users to clinical actions designed to meet quality metric 

requirements, or to increase profit, without necessarily conferring any benefit on patients. As 

complex dynamic networked systems evolve, it may be difficult to attribute responsibility 

among different AI agents, let alone between machines and humans81. Furthermore, the ethical 

principles required by those developing, adapting and maintaining AI tools may differ from the 

principles of those using or implementing the AI tools. Constant dialogue will be required 

between developers and users to ensure that both groups adhere to common standards of 

ethical behavior, and understand any differences that exist. 

 

Many companies working in the area of AI have established ethics boards and adopted ethics 

charters. This is to be welcomed. It is vital that these bodies and their activities represent 

sincere efforts to maintain high ethical standards, and not “ethics washing”, designed as a 

strategy to avoid external regulation. In some instances, questions have been raised by outside 

observers about the transparency of these groups regarding their membership, 

recommendations and influence on commercial activity and decision-making82. Such ethical 

bodies should be truly independent of commercial influence to ensure trustworthiness. 

 

How should oversight be maintained? Certainly there must be committees, boards, or working 

groups tasked with scrutinizing the introduction of AI, its clinical use, and outcomes from that 

use. The composition of these bodies should, to the extent possible, include all stakeholders 

involved in or impacted by the use of AI, especially including patient representatives. Individual 

radiologists, through continued medical education to improve their understanding of AI, can 

contribute by actively monitoring model performance as they use AI in their daily clinical 

practice. A mechanism to gather, compile, and disseminate information on the limitations, 

pitfalls, or failures of each AI model can help ensure transparency and continued quality 

assurance and improvement.  

 

Tasks or decisions that should not be delegated to models need to be identified to ensure 

human oversight and prevent potential harm to patients. Whether these oversight bodies need 
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formal legislation to mandate and maintain them will be a matter for each jurisdiction. It may 

be sufficient for the authority of these bodies to rest within professional organizations, 

hospitals or academic health care structures (once these institutions are trusted by their staff, 

their patients, and the public). The legal question of treating autonomous AI agents differently 

from those under direct human supervision is under consideration, and yet to be decided83. 

Education 

Rather than AI replacing radiologists, technologists, and other roles in radiology, new and 

different skills will be needed to practice AI-enabled radiology. This offers a unique opportunity 

to reassess the essential components of radiological work and determine the optimal 

combination of humans and AI to perform these tasks. Radiology needs research and specific 

guidance on training and protocols for both radiologists and patients for new, shared decision-

making paradigms. Part of this training will need to focus on the practical question of how best 

to use the new AI tools that will be made available. But part of this training will need to focus 

on the ethical matters that arise by virtue of employing new AI tools. Beyond the details of 

ensuring ethical collection and use of data, and ethical development of algorithms (both of 

which processes will be driven and controlled by relatively small numbers of individuals), there 

are responsibilities to apply the algorithms in practical day-to-day patient care in an ethical 

fashion. These fall to every physician whose practice uses AI tools. The best way to ensure that 

AI tools are used ethically is to make the physicians who use them daily aware of the moral risks 

they face when using these tools. The better trained radiologists are, the fewer cases of 

wrongdoing there will be, blameless or otherwise. 

Automation bias 

Automation bias is the tendency for humans to favor machine-generated decisions, ignoring 

contrary data or conflicting human decisions. The literature contains several examples of 

automation bias that occur when humans monitor or observe decision-making machines 

particularly in highly complex situations [84]. Automation bias leads to misuse of decision-

making machines, including over-reliance, lack of monitoring, and blind agreement85. 

Automation bias in clinical decision support systems has been well reviewed86. 

 

Automation bias leads to errors of omission and commission. Omission errors occur when a 

human fails to notice, or disregards, the failure of the AI tool. High decision flow rates, where 

decisions are swiftly made on radiology exams and the radiologist is reading examinations 

rapidly, predispose to omission errors. This is compounded by AI decisions made based on 

features that are too subtle for humans to detect. Commission errors occur when the 

radiologist erroneously accepts or implements a machine’s decision in spite of other evidence 

to the contrary.  
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Radiology confronted automation bias years ago with the original use of computer-aided 

detection (CAD) algorithms in the interpretation of screening mammography. A few studies 

suggested that the original algorithm had reduced interpretation accuracy87 and decreased 

sensitivity in a subset of radiologists88. It was theorized that reduced accuracy may have been 

related to over-reliance on CAD outputs. While today’s AI-based CAD algorithms show much 

greater promise than traditional CAD in experimental settings, it is not clear how human-AI 

interactions will impact accuracy or efficacy in actual clinical settings. This will be partially 

addressed through validation processes like FDA approval, which will include evaluation of 

safety and efficacy. An element of “soft governance” is also useful; AI (or other products) are 

unlikely to be widely purchased if they cannot show compliance with accepted standards 

(whether required by legislation or not)89. 

 

There is a risk that resource poor populations may be harmed to a greater extent by 

automation bias because there is no local radiologist to veto the results. AI developers 

ultimately need to be held to the same "do no harm" standard as physicians. They should be 

held accountable, on grounds of negligence, for the unacceptably bad medical outcomes that 

foreseeably result from the use of their products.  

Patient preferences 

A poll in 2017 reported that 65% of American adults feel uncomfortable delegating the task of 

making of a medical diagnosis to a computer with AI90. Research is needed to understand when 

and how patients will, and if they should, trust radiology decisions made by machines. 

 

While radiology should consider the collective wishes of patients with respect to the use of AI 

tools in their care, these wishes may not conform to the logic that drives AI models. For 

example, studies about decision-making in autonomous vehicles (AVs) showed that people 

approve of utilitarian AVs which would sacrifice their passengers for the greater good if faced 

with a choice of running over pedestrians or sacrificing their occupants, and they would like 

others to buy them. On the other hand, they themselves preferred to travel in AVs that protect 

their passengers at all costs91. Adding complexity, recent research indicates that norms 

surrounding AI are culturally variable across the world92, suggesting that a one-size-fits-all 

approach will often be impossible. 

 

Similar ambivalence in public attitudes towards radiology AI is likely. Will the public accept 

imperfections in AI-driven radiology as it relates to individuals, in favor of a potential greater 

good? Or will an individual deciding for themselves or their loved ones have a much lower 

tolerance for such imperfections? If, for example, medical imaging is purely protocol-driven and 

algorithm-interpreted, will there still be room for the practice of common sense, and for 
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balancing individual and population risks related to radiation exposure against specific patient 

expectations? If AI-driven radiology is acknowledged to be imperfect and rapidly evolving, will 

the public accept it because it is less-costly or less-labor intensive than human-provided 

radiology? 

Traceability 

Traceability is the ability to link things, and to follow the link. It is a crucial factor to ensure 

patients’ and health care providers’ trust in these systems. Traceability helps to detect products 

that do not function as expected, and to assess quality control and implement corrective 

actions.  

 

The concept applies to multiple parts of software engineering. In radiology AI, a required 

diagnosis field in a radiology report, such as presence or absence of disease X, could be linked 

to an AI model that generates that categorization. Once this link is established, one can trace 

the relationship to verify the categorization has occurred. Similarly, the categorization can be 

traced back to the AI model that generated it. Traceability in software testing is the ability to 

trace tests forward and backward, usually using controlled test cases, or running the AI model 

in a controlled environment to see if it meets specifications. Traceability matrices document 

relationships among these requirements. 

AI and workforce disruption 

One of the greatest fears about AI is that humans will lose their jobs because of it89. 

Radiologists are not immune to this possibility, nor to the fear arising from it. This could lead to 

behaviors and practices in the future designed to ensure the continuing relevance and roles of 

human practitioners in health care, regardless of whether or not continued direct human 

involvement is of ultimate benefit to the public. 

 

 Much of the current debate about ethical issues surrounding the use of AI in health care 

centers around the presumption that one of the key roles of humans in AI implementation is to 

prevent negative consequences from its utilization. It would be perverse to ignore the 

possibility that humans may not act disinterestedly, and that radiologists have a vested interest 

in ensuring they are not made entirely redundant by emerging technology and artificial 

intelligence. Furthermore, in a potential future where radiologists’ position in the hierarchy is 

threatened or diminished in favor of information scientists or other nontraditional medical 

players, they may feel driven to protect their relevance. Not only is there an ethical imperative 

to protect patients and the general public from the dangers of “robot-only radiology,” there is 

also a countervailing need for protection against a radiologist or other physician self-interest if 

it conflicts with the general good.   
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We simply don’t know how patients will interact with robust radiology AI. Parts of it may be 

widely embraced, and other parts may generate fear and significant pushback. One described 

behavior is labeled ‘liberal eugenics,’ where a subset of the population with special knowledge 

or access to resources may use them to gain some sort of advantage. For example, they might 

take advantage of an expensive radiology screening AI tool93.   

 

Much media attention has been paid in recent years to statements suggesting that radiologists 

will become redundant in a new age of AI interpretation. This has led to fear among many 

medical students and young doctors that future careers might not be available to them in 

radiology, resulting in decreasing applications for places on radiology training programs. As 

understanding grows about likely AI influences on radiological practice, it seems more probable 

that we may suffer from the consequences of a future shortage of radiologists arising from this 

fear. This could paradoxically force accelerated implementation of AI solutions due to a reduced 

available human workforce, regardless of whether this confers population benefit or not. 

Resource inequality 

AI requires access to large amounts of data, the technology and skills to manage those data, 

and computer power to train and manage complex AI systems. Smaller or resource-poor 

hospitals and academic departments may lack these capabilities. Almost certainly some 

radiology AI will be proprietary, developed by large academic or private health care entities, 

insurance companies, or large companies with data science expertise but little historical 

radiology domain knowledge. This may exacerbate disparities in research capacity and services 

offered.  

 

While financial incentives must be made available to model developers to foster continued 

research and development, thought must be given to the well-being of resource-poor 

communities. Affordable access to models proven to improve individual and population health 

outcomes may be attainable through government or private funding. In addition, radiologists 

and other users of models should be cognizant of potential biases towards resource-poor 

communities due to underrepresentation of certain populations or communities during the 

training and testing processes. Awareness of these biases can promote recognition of issues as 

they arise during the implementation and utilization of these models. To these ends, the 

advisory groups of organizations and institutions in charge of monitoring model performance 

should be composed of people of diverse backgrounds and expertise to ensure adequate 

representation. Although there is no universally-agreed upon definition of “fairness,” it seems a 

reasonable position to suggest that health care AI tools should make every effort to offer a 

sufficient degree of equal opportunity and access for all served by the health care system 

within which it will be deployed, including minority groups69. For example, an algorithm that is 
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very accurate when given very high quality images and not quite as good when used on lower 

quality images might still be considered ethical, even if unequal. On the other hand, for 

example, a TB screening algorithm designed for developed world might work poorly in 

developing countries, or locations with high HIV rates where the inflammatory response to TB 

causes different features. Using it in that setting might do more harm than good. 

Liability 

One offshoot of this issue is whether or not AI should be liable for its actions, and if so, how? 

This is primarily a legal question, though ethics and morality affect the outcome. For the 

moment, humans will bear ultimate responsibility and liability81. 

 

In considering ethics of using AI models in medical practice, one must also consider the 

liabilities when poor patient outcomes occur. Currently, physicians, including radiologists, are 

held liable in cases where “standard of care” are not provided. In the new era of AI-assisted 

care, the “standard of care” is still to be determined.   In cases where AI is used as a decision 

aid, it is likely that radiologists will still be considered liable, though it is probable that litigation 

will also accuse AI product manufacturers. However, as models incorporate large amounts of 

data, some of which are not human-perceptible, the question will arise as to whether 

physicians should still be held wholly responsible for bad outcomes or whether responsibility 

should be shifted partly or wholly to those who produce, market, and sell models. If, for 

example, low-dose CT images are manipulated by an algorithm to improve image quality, and 

this processing alters a subtle but important feature the point of not being visible, the liability 

should surely reside more with the software developer than with the physician using the tool. 

Engineers, programmers and the company they work in are potentially liable if the outcome 

over a large amount of data does not demonstrate a similar ROC and specificity. On the other 

side, as AI extends into technically sophisticated practice, might radiologists be found guilty for 

not having used it? 
 

Transparency for AI in radiology should have a means to evaluate whether some culpable 

defect in the model has contributed to poor patient outcomes.  Should the hospital or health 

care system that implements such models be liable?  In addition, what happens when the poor 

patient outcome is a result of a radiologist using his or her own best judgment against the 

output of an AI model? Today, a question of a radiologist’s liability relates to one of negligence: 

Did the physician behave reasonably under the circumstances? With an autonomous machine 

and no human at the controls, will the focus be on whether the computer performed as well as 

it should have17, 83? Furthermore, it is conceivable that a radiologist could be considered liable 

for a poor outcome if she failed to make use of an available AI tool in the diagnostic process.  
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The legal issues surrounding AI implementation will be complex, and remain somewhat 

unpredictable. For example, if AI software is not embedded in any device, but resides in an 

application, it may be argued that it represents a service, rather than a product, and is 

therefore not subject to product liability legislation. In the EU, medical devices fall under the 

Product Liability Directive. The new EU Medical Devices Regulation states that “software in its 

own right, when specifically intended by the manufacturer to be used for one or more of the 

medical purposes set out in the definition of a medical device, qualifies as a medical device,” 

and would therefore fall under product liability legislation69, 94. A different issue is whether 

courts may take the view in the future that failure to use an available AI tool in medical care 

may constitute negligence69. With respect to these complex legal issues, much remains to be 

decided, by practice and case law. 

Conflicts of interest  

Conflict of interest (COI) is “a set of circumstances that creates a risk that professional 

judgment or actions regarding a primary interest will be unduly influenced by a secondary 

interest.”95, 96 With nascent, evolving markets like those involving radiology AI, it is expected 

and quite normal that radiologists involved in patient care would also sometimes hold positions 

in AI startups or more established commercial entities positioning themselves to compete for 

position in health care. Similar to when an investigator evaluating a new drug has a financial 

interest in its success, radiologists or administrators who have COIs related to AI products may 

be managed through remedies such as public disclosure, institutional oversight, divestment, or 

other measures.  

 

In some cases, the title or position of a physician, nurse, or administrator in a health care 

system may effectively render their COI as an institutional COI. Addressing this, the American 

Association of Medical Colleges states that an individual’s “official’s position may convey an 

authority that is so pervasive or a responsibility for research programs or administration that is 

so direct that a conflict between the individual’s financial interests and the institution’s human 

subjects research should…be considered an institutional conflict of interest.”97. With 

institutional conflicts of interest, institutions may need to be creative with additional 

independent oversight measures to prevent a loss of public confidence. 

 

Individuals or institutions with conflicts of interest in health care should be vigilant to disclose 

and manage those conflicts98, 99. When dealing with AI in health care, those in positions to 

facilitate disclosures of patient or subject data to third parties not pursuant to patient care, 

purchase AI agents, or implement models in clinical workflows should be especially careful to 

manage their conflicts, which may in some cases require them to recuse themselves from such 

activities. 
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As radiology incorporates autonomous and intelligent AI products into widespread, demanding 

clinical practice, those responsible should be able to answer these and other similar questions 

about the Ethics of this new Practice paradigm: 

 

● What are the patient and provider risks associated with this AI implementation, and 

what level of human oversight is necessary to mitigate these risks?   

● What education and skills are needed to decide whether to apply AI to our patients, and 

to safely and effectively use it when appropriate 

● How do we ensure that testing data accurately reflects the targeted clinical cohort? 

● What system/process should we implement to monitor the impact (outcomes, privacy, 

and unintended discrimination) of AI on our patients, and providers (automation bias)? 

● How do we continuously and actively monitor AI driven autonomous and intelligent 

tools to verify they are working as expected in clinical care? 

● What guardrails should we use to determine when, and more importantly when not, to 

implement autonomous or intelligent mechanical agents? 

Conclusion 

AI has the potential to improve radiology, help patients, and deliver cost-effective medical 

imaging. It amplifies complex ethical and societal questions for radiology. It will conceivably 

change every part of radiology to some degree. Most of these will be positive, but some may be 

for the worse. The goal should be to obtain as much value as possible from the ethical use of AI 

in radiology, yet resist the lure to obtain extra monetary gain from unethical uses of radiology 

data and AI. 

  

Everyone involved with radiology AI has a duty to understand it deeply, appreciate when and 

how hazards may manifest and be transparent about them, and to do all they can to mitigate 

any harm they might cause.  

  

AI has dramatically altered the perception of radiology data — their value, how to use them, 

and how they may be misused. Because AI allows us to obtain more or previously unknown 

information from images, radiologists have a duty to understand these new situations with 

their data. Radiologists and the radiology community have a moral duty to use the data we 

collect and the potential new insights that AI offers to improve the common good, extract more 

information about patients and their diseases, and improve the practice of radiology.  

  

For radiology, the value of data and of AI will be more situational than absolute. The radiology 

community has a duty to strengthen helpful systems and institutions to provide the appropriate 

circumstances for ethical AI to flourish in clinical care, research, population health, and 
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business. There will be options to make money from radiology data that are legal, but are still 

unethical and simply should not be done because they potentially harm patients or society.  

  

Radiology should start now to develop codes of ethics and practice for AI. These codes should 

promote any use which helps patients and the common good, and block use of radiology data 

and algorithms for financial gain without those two attributes. Establishing these regulations, 

standards, and codes of conduct to produce ethical AI means balancing the issues with 

appropriate moral concern. Ensuring ethical AI requires a desire to gain trust from all parties 

involved. Regulations, standards, and codes of conduct must be agreed upon and continually 

updated. We need both radiology-centric AI expertise and technology to verify and validate AI 

products. Paradoxically, some of this technology may contain AI. Key to these codes of conduct 

will be a continual emphasis for transparency, protection of patients, and vigorous control of 

data versions and uses. Continuous post implementation monitoring for unintended 

consequences and quality escapes with formal root cause and corrective action for these must 

be enforced. 

  

Radiologists are learning about ethical AI at the same time they invent and implement it. 

Technological changes in AI, and society’s response to them, are evolving at a speed and scope 

which are hard to grasp, let alone manage. Our understanding of ethical concerns and our 

appropriate response to them shift constantly. To do best by our patients and our communities, 

we have a moral obligation to consider the ethics of how we use and appreciate data, how we 

build and operate decision-making machines, and how we conduct ourselves as professionals. 

 

  



43 

Definitions 

 

● Artificial intelligence (AI) - The science and engineering of making computers behave in 

ways that, until recently, were thought to require human intelligence.  

● Machine learning (ML) - Algorithms whose performance changes, and ideally improves, 

as they are exposed to more data.  Though AI is the more common term, ML is more 

accurate for current techniques. 

● Supervised ML - A type of ML for which the algorithm changes based on data with 

known labels. In clinical radiology to evaluate medical images, supervised ML is a 

repetitive process to match images to existing labels.  

● Unsupervised ML - In unsupervised ML, the algorithm is fed an unlabeled dataset (i.e. 

one without answers). In this case the algorithm groups image findings into clusters 

based on one or more features it “learns”.  

● Deep learning - A type of ML that uses multiple layers of inputs and outputs.  

● Neural network - A subset of deep learning that has proved good at making predictions 

about images 

● Algorithm - Computer code that defines the actions that will be performed on input data 

● Model - The result of training an algorithm on a dataset. Each time the same algorithm 

is trained on a different dataset, or a different algorithm is trained with the same 

dataset, a new model results.  Once a model is trained, it runs much faster and requires 

much less compute power, as long as the input images are similar to the training 

dataset. 

● Bias - A systematic deviation from the truth.  

● Variance - A random deviation from the truth.  
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