The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2014 (Resolution 15)*

ACR–SPR–SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF RADIOGRAPHY FOR SCOLIOSIS IN CHILDREN

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Skeletal Radiology (SSR).

Scoliosis is defined as a lateral curvature of the spine of 10 degrees or more, usually with a rotary component [1-4]. It can be classified according to its etiology: congenital, idiopathic, traumatic, degenerative, or as part of a generalized disease or syndrome [3,5,6]. Radiography is a proven and useful procedure to confirm the presence of scoliosis and characterize and classify the spinal deformity [2-5,7].

This practice parameter outlines the principles for performing high-quality radiography of the spine for scoliosis in children.

Radiography for scoliosis in children should be performed only for a valid medical reason and with the minimum radiation dose necessary to achieve a diagnostic-quality study. Additional views or specialized examinations may be required. Although it is not possible to detect every abnormality associated with scoliosis, adherence to this practice parameter will maximize the probability of detection.

All radiographic examinations should be performed in accordance with the ACR–SPR Practice Parameter for General Radiography.

II. INDICATIONS

Indications for radiography of the spine for scoliosis include, but are not limited to, the following:

1. Alterations in normal spinal alignment on physical examination
2. Alterations in normal spinal alignment detected on other imaging studies
3. Evaluation of spinal curvature progression
4. Follow-up of treatment (orthotic or surgical)
5. Evaluation of individuals with a history of scoliosis in immediate family members

For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation.

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR–SPR Practice Parameter for General Radiography. In addition, the interpreting physician should be familiar with the proper technique and assessment of scoliosis radiographs [1,8,9].

IV. SPECIFICATIONS OF EXAMINATION

The written or electronic request for a radiograph for a scoliosis evaluation should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately
licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state’s scope of practice requirements. (ACR Resolution 35, adopted in 2006)

A. Scoliosis Survey

The number of views required for complete evaluation of scoliosis varies with the clinical indications. For scoliosis screening, a posteroanterior (PA) radiograph of the spine obtained in the upright position may be sufficient [3,9]. The field of view should extend from the cervicocranial junction to the proximal femurs. [1,3,7,9-11]. PA positioning of the patient decreases radiation dose to the thyroid and breast [3,4]. A supine view will suffice if the patient is unable to stand (e.g., the very young child or patient with paralysis) [7]. An upright lateral radiograph facilitates assessment of sagittal deformity (abnormal kyphosis and lordosis), sagittal balance, [3] and spondylolisthesis. Spondylolysis may be detected, although this is best evaluated with dedicated images when relevant.

The patient should stand (preferably) or sit before a vertical grid. When standing, the knees are placed together in full extension. In the lateral position, arms should be placed straight in front of the patient rather than above the patient’s head to prevent hyperextension of the spine. This can be facilitated with gentle support of the patient’s arms by an IV pole stand or similar structure [7,9]. When possible, the PA image of the thoracolumbar spine should be obtained at a minimum source-to-receptor distance of 6 feet and an image size of either 14” x 17” or 14” x 36”. It is also acceptable to perform 2 exposures with the patient in unchanged position. With computed radiography (CR) and digital radiography (DR), some vendors provide software to “stitch” the 2 images into one [11-14]. Comparison of the source images to the stitched images is helpful to determine if any artifacts were generated during stitching and to confirm overlap or “missing” levels between original source images [15,16].

On the initial examination, the thoracic cage and pelvis may be imaged for correlation with clinical findings (e.g., shoulder elevation, trunk shift, rib cage deformities, and congenital rib abnormalities). On the follow-up examinations, the x-ray beam should be collimated to the spine to increase image quality (due to the reduction of scattered radiation) and reduce the area of the patient exposed to radiation. Methods to decrease radiation exposure may include the use of lead-acrylic filters, breast shields for anteroposterior (AP) examinations, increased beam filtration, and low dose imaging systems [3,4,7,17-19].

Gonadal shielding should be used in boys, when appropriate, as per department protocol. The use of gonadal shielding in girls is controversial [20,21].

B. Additional Imaging Evaluation

For patients who are being assessed or clinically treated for scoliosis, additional images may include the following:

1. Right and left lateral bending images. These are usually obtained with the patient supine [7,9]. They are used to determine the flexibility of the curve(s) and to differentiate between structural and nonstructural curves [7].
2. Hyperextension and hyperflexion upright views to determine the flexibility of kyphosis and lordosis, respectively [7]
3. Images in an orthosis [22]
4. PA examination of the hand and wrist may also be performed to determine bone age.

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings.
A. Imaging Analysis of Scoliosis

1. General
 a. Vertebral abnormalities such as fractures, scalloping, and congenital anomalies (e.g., hemivertebrae, segmentation anomalies, dysraphism)
 b. Abnormalities of other osseous structures
 c. Evaluation of extraosseous structures included in the examination (e.g., chest and abdomen)
 d. Note should be made of the presence of a brace, shoe lift, or other orthosis, if this is known to the radiologist [11].
 e. Reporting should also include whether the patient is imaged standing, sitting, or supine.
 f. Imaging should include the triradiate cartilages [23].

2. Curve analysis may include the following (see appendix for definitions of terms)
 a. Presence and number of curves. If there is more than one curve, they can be referred to as “major” and “minor” (or “compensatory”) based on their Cobb measurements [24,25]. The terms “primary curve” and “secondary curve” should be avoided since these refer to chronology of development, which cannot be determined from a single study [3,6]. If lateral bending images are obtained, the curves can be further classified as “structural” or “nonstructural” [7,11,25].
 b. Curve pattern (cervical, thoracic, lumbar, cervicothoracic or thoracolumbar)
 c. Location of apical vertebra(e)
 d. Curve length (short or long)
 e. Curve measurement. This is determined using the Cobb technique after identification of the superior and inferior end plates of the cephalad (or upper) and caudal (or lower) end vertebrae, respectively [7,9,11,24,26]. If the end plates are poorly visualized, the pedicles can be used instead [7,27].
 f. Vertebral rotation. After identifying the apical vertebra, the degree of axial rotation can be estimated using any of several established techniques, including those of Nash and Moe [3,7,9,24,28] and Perdriolle [3,7,26,29].
 g. Evaluation of lordosis and kyphosis. End vertebrae are identified according to the Cobb technique, using the lateral view. On occasion, the upper end vertebra is not well visualized; in this case the superior end plate of T3 or T4 may be used [25].
 h. Several parameters can be combined to create a classification to guide surgical management for adolescent idiopathic scoliosis [3,11,24]. These include those devised by King et al [30] or Lenke et al [31], the latter being more widely used [24].
 i. Central sacral vertical line may be performed to assess balance of scoliosis [32].

3. Additional measurements may be obtained in special cases, such as the rib-vertebral angle in infantile idiopathic scoliosis [3,33].

4. Determination of skeletal age. This can be accomplished by analyzing the development of the iliac crest apophysis as described by Risser [7,24,34] and/or analyzing a PA radiograph of the hand and wrist according to standardized methods, such as the atlas-matching method of Greulich and Pyle [7].

VI. EQUIPMENT SPECIFICATIONS

Radiographic images shall be exposed only with equipment having a beam-limiting device with rectangular collimators.

Imaging options include a wall-mounted device that accommodates a 14" x 17" or a 14" x 36" image receptor or a digital radiography system capable of stitching 2–3 images into a single image. A low-dose biplane x-ray imaging system is another method for imaging scoliosis, which can provide lower dose studies of the spine and has the advantage of 3-D reconstructions [35-39].

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a
whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels) http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf

Nationally developed guidelines, such as the ACR’s Appropriate Image Procedures to prevent unwarranted radiation exposure.

Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR technical standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Radiographic Equipment.

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by Committee on Practice Parameters – Pediatric of the ACR Commission on Pediatric Radiology, the Committee on Body Imaging (Musculoskeletal) of the ACR Commission on Body Imaging, and the Committee on Practice Parameters -General, Small, and Rural Practice, in collaboration with the SPR and SSR.
Collaborative Committee
Members represent their societies in the initial and final revision of this practice parameter.

ACR
Eric N. Faerber, MD, FACR, Chair
Boaz K. Karmazyn, MD
Matthew S. Pollack, MD, FACR

SPR
Molly E. Dempsey, MD
Sumit Pruthi, MBBS
David C. Wilkes, MD

SSR
J.H. Edmund Lee, MD
Jonathan S. Luchs, MD
Barbara N. Weissman, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Eric N. Faerber, MD, FACR, Chair
Sara J. Abramson, MD, FACR
Richard M. Benator, MD, FACR
Lorna P. Browne, MB, BCh
Brian D. Coley, MD, FACR
Monica S. Epelman, MD
Kate A. Feinstein, MD, FACR
Lynn A. Fordham, MD, FACR
Tal Laor, MD
Beverley Newman, MB, BCh, BSc, FACR
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD

Committee on Body Imaging) - Musculoskeletal
(ACR Committee responsible for sponsoring the draft through the process)

Kenneth A. Buckwalter, MD, MS, FACR, Chair
Christine B. Chung, MD
Robert K. Gelczer, MD
Christopher J. Hanrahan, MD, PhD
Viviane Khoury, MD
J.H. Edmund Lee, MD
Jeffrey J. Peterson, MD
Trenton D. Roth, MD
David A. Rubin, MD, FACR
Andrew H. Sonin, MD, FACR
Committee on Practice Parameters – General, Small, and Rural Practice

(ACR Committee responsible for sponsoring the draft through the process)

Matthew S. Pollack, MD, FACP, Chair
Sayed Ali, MD
Gory Ballester, MD
Lonnie J. Bargo, MD
Christopher M. Brennan, MD, PhD
Candice A. Johnstone, MD
Pil S. Kang, MD
Jason B. Katzen, MD
Gagandeep S. Mangat, MD
Serena McClam Liebengood, MD
Tammam N. Nehme, MD

Marta Hernanz-Schulman, MD, FACP, Chair, Commission on Pediatric Radiology
James A. Brink, MD, FACP, Chair, Commission on Body Imaging
Lawrence A. Liebscher, MD, FACP, Chair, Commission on GSR
Debra L. Monticciolo, MD, FACP, Chair, Commission on Quality and Safety
Julie K. Timins, MD, FACP, Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Mark J. Adams, MD, MBA, FACP, Chair
Jonathan Flug, MD, MBA, Co-Chair
Kimberly E. Applegate, MD, MS, FACP
James A. Brink, MD, FACP
Kenneth A. Buckwalter, MD, MS, FACP
Molly E. Dempsey, MD
Eric N. Faerber, MD, FACP
Marta Hernanz-Schulman, MD, FACP
William T. Herrington, MD, FACP
Boaz K. Karmazyn, MD
Paul A Larson, MD, FACP
J.H. Edmund Lee, MD
Jonathan S. Luchs, MD
Debra L. Monticciolo, MD, FACP
Matthew S. Pollack, MD, FACP
Sumit Pruthi, MBBS
Michael I. Rothman, MD
Julie K. Timins, MD, FACP
Barbara N. Weissman, MD
David C. Wilkes, MD

REFERENCES

APPENDIX

Cobb measurement of angle: the “end vertebrae” are identified. The end vertebrae are the vertebrae tilted maximally toward the concavity of the curve. Parallel lines are drawn along with superior endplate of the upper end vertebra and the inferior endplate of the lower end vertebra or through the pedicles if the endplates are indistinct. Lines are constructed perpendicular to these endplate lines. The angle subtended by these lines is the angle of curvature.

Scoliosis Research Committee (SRS) Terminology – Selected Terms [25]:

- **Apical vertebra (apex):** in a curve, the vertebra most deviated laterally from the vertical axis that passes through the center of the sacrum

Caudal end vertebra: the first vertebra in the caudal direction from a curve apex whose inferior surface is tilted maximally toward the concavity of the curve

Cephalad end vertebra: the first vertebra in the cephalad direction from a curve apex whose superior surface is tilted maximally toward the concavity of the curve

Cervical scoliosis: a scoliosis with its apex at a point between C1 and the C6–7 disc

Cervical-thoracic scoliosis: a scoliosis having its apex at C7, T1, or the intervening disc space

Compensatory curve: a minor curve above or below a major curve that may or may not be structural

End vertebrae: the vertebrae that define the ends of a curve in a frontal or sagittal projection

Hyperkyphosis: a kyphosis greater than the normal range

Hyperlordosis: a lordosis greater than the normal range

Idiopathic scoliosis: a lateral curvature of the spine ≥ 10° with rotation; of unknown etiology

Lumbar scoliosis: a scoliosis with its apex at a point between the L1–L2 disc space and the L4–L5 disc space
Major curve: the curve with the largest Cobb measurement on an upright radiograph of the spine

Minor curve: any curve that does not have the largest Cobb measurement on an upright radiograph

Nonstructural curve: a measured curve in the coronal plane in which the Cobb measurement corrects past zero on a supine lateral side-bending radiograph

Pelvic inclination: deviation of the pelvic outlet from the vertical, measured as an angle between the line from the top of the sacrum to the top of the pubis, and a horizontal line perpendicular to the lateral edge of the standing radiograph

Structural curve: a measured curve in the coronal plane in which the Cobb measurement fails to correct past zero on a supine radiograph with maximal voluntary lateral side-bending

Thoracic scoliosis: a scoliosis with its apex at a point between the T2 vertebral body and the T11–T12 disc

Thoracolumbar scoliosis: a scoliosis with its apex at T12, L1, or the intervening T12–L1 disc.

Vertebral axial rotation: transverse plane angulation of a vertebra. One method of measurement is with the Perdriolle technique (in degrees).

The recommended measurement of thoracic kyphosis from a lateral radiograph is the angle between the superior endplate of the highest measurable thoracic vertebra, usually T2 or T3, and the inferior endplate of T12.

The recommended measurement of lumbar lordosis from a lateral radiograph is the angle between the superior endplate of L1 and the superior endplate of S1.

Normal range for thoracic kyphosis: 20–50 degrees

Normal range for lumbar lordosis: 20–60 degrees

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
2004 (Resolution 7)
Amended 2006 (Resolution 17, 35)
Revised 2009 (Resolution 32)
Revised 2014 (Resolution 15)