The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2016 (Resolution 4)*

ACR–SPR–SSR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF MAGNETIC RESONANCE IMAGING (MRI) OF BONE, JOINT, AND SOFT TISSUE INFECTIONS IN THE EXTREMITIES

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was developed and written collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Skeletal Radiology (SSR).

Bone, joint, and soft-tissue infections of the extremities are challenging conditions for clinicians and radiologists. Efficient diagnosis and timely treatment are important to prevent long-term morbidity. Evaluation of the patient with suspected musculoskeletal (MSK) infection affecting an extremity combines clinical assessment, laboratory investigations, and diagnostic imaging.

Osteomyelitis (bone infection) [1-3], septic arthritis (infection of a joint) [1,3-5], and deep and superficial soft-tissue infections [6-16] occur in all age groups. They are caused by a variety of bacteria and less commonly by viruses, fungi, or parasites [1-3,12]. The routes of contamination include hematogenous, direct inoculation, and contiguous spread [1,3,6-8,10,13,14,16]. Infection that involves the growth cartilage can occur in young children [17].

Magnetic resonance imaging (MRI) has proven to be one of the most useful imaging modalities in the evaluation of MSK infections [1,7,8,10,18-22]. In the extremities, MRI is usually the study of choice when it is necessary to confirm or exclude clinically suspected infections, to stage the local extent of disease, and to follow up patients after treatment. Compared with other imaging modalities, the power of MRI is its sensitivity for detecting bone marrow abnormalities and its ability to characterize associated soft-tissue abnormalities [3,19]. For MSK infections, MRI has a 100% negative predictive value; a normal study virtually excludes active infection [18,20].

Radiography [8,19,23-26], computed tomography (CT) [6,20,27-34], ultrasound [19,20], and combined bone and labeled leukocyte scintigraphy [35-40] have complementary roles in the evaluation of MSK infections. Radiography should be the initial imaging test. It may demonstrate findings of established osteomyelitis, or, in the case of some soft-tissue infections, it may reveal gas or foreign matter. Initial radiographs may show an alternative diagnosis, such as fracture nonunion or tumor that accounts for the clinical symptoms and obviates further evaluation for infection. Additionally, radiographs help the interpretation of MRI studies, especially in the diabetic, neuropathic, or postoperative foot, where infection is often superimposed on neuropathic disease and surgically altered anatomy [20,25]. Nuclear medicine examinations, including bone scintigraphy and labeled leukocyte scans, have a potential role to detect infection in specific circumstances, especially with multifocal osteomyelitis or when infection is suspected near metallic implants or superimposed on pre-existing bone disease [35,36,41-44]. The introduction of SPECT/CT imaging has provided improved diagnostic accuracy over that of planar or SPECT-alone scans. The main value of SPECT/CT is more of precise anatomical localization of infection and accurate delineation of the infection extent after its diagnosis with planar scintigraphy [45]. Additionally, in patients with contraindications precluding MRI, nuclear medicine imaging may be used for primary diagnosis. Fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has also shown promising results in identifying MSK infections in specific situations [1,20,46-52]. FDG-PET test is sensitive, with a high negative predictive value, and reliably differentiates degenerative from infectious vertebral body end plate abnormalities [53].

Compared with modalities other than ultrasound, which is primarily used to evaluate for soft-tissue abscesses, MRI does not use ionizing radiation and provides superb evaluation of the bone marrow and soft tissues [1,20]. CT provides better visualization of cortical bone than MRI [27] and may better depict chronic sequestra. However, the viability of infected bone in acute and subacute infection and the presence of intraosseous abscesses are better defined using MRI [27,54]. For detecting gas in necrotizing infections, either CT or MRI examinations are effective, although for critically ill patients CT can usually be performed faster [55]. Patients with contraindications to MRI will require other modalities for primary evaluation. Additionally, while not a contraindication, MRI may have limited utility immediately adjacent to metallic implants. In selected cases, use of >1 imaging modality will be needed for a complete evaluation [56-59]. Furthermore, CT and ultrasound play a role for guiding aspiration and biopsy of infected bones, joints, and soft tissues [20,27].
Despite its strengths, MRI should be performed only for a valid medical reason, and its findings need to be interpreted in conjunction with clinical history, physical examination, and laboratory results to avoid misinterpretations [16,60]. Adherence to the following practice parameter will increase the probability of detecting clinically relevant abnormalities in patients with bone, joint, and soft-tissue infections in the extremities.

II. INDICATIONS

Indications for MRI of bone, joint, and soft-tissue infections of the extremities include, but are not limited to, screening, staging, and follow-up of:

1. Bone infection including, but not limited to:
 a. Acute osteomyelitis [1,20]
 b. Subacute osteomyelitis [1,20]
 c. Chronic osteomyelitis [1,20]
 d. Complications of osteomyelitis [3]

2. Septic arthritis and its complications [1,20]

3. Soft-tissue infections including, but not limited to:
 a. Cellulitis refractory to initial treatment [16,18,29,31,61,62]
 b. Superficial fasciitis [16,19,62]
 c. Deep fasciitis, including necrotizing fasciitis [16,62,63].
 d. Soft-tissue abscess and/or pyomyositis [16,62]
 e. Septic tenosynovitis [16,19]
 f. Septic bursitis [16,19]
 g. Infectious lymphadenitis [6,16]
 h. Deep and superficial septic thrombophlebitis [64]
 i. Complications of soft-tissue infections [64]

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR Practice Parameter for Performing and Interpreting Magnetic Resonance Imaging (MRI) [65].

IV. SAFETY GUIDELINES AND POSSIBLE CONTRAINDICATIONS

See the ACR Practice Parameter for Performing and Interpreting Magnetic Resonance Imaging (MRI) [65] and the ACR Guidance Document on MR Safe Practices: 2013 [66].

Peer-reviewed literature pertaining to MR safety should be reviewed on a regular basis [67,68].

V. SPECIFICATIONS OF THE EXAMINATION

The supervising physician must have complete understanding of the indications, risks, and benefits of the examination, as well as alternative imaging procedures. The physician must be familiar with potential hazards associated with MRI, including potential adverse reactions to contrast media. The physician should be familiar with relevant ancillary studies that the patient may have undergone. The physician performing MRI interpretation must have a clear understanding and knowledge of the anatomy and pathophysiology relevant to the MRI examination.

The written or electronic request for MRI of bone, joint and soft tissue infections of the extremities should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.
Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state’s scope of practice requirements. (ACR Resolution 35, adopted in 2006)

The supervising physician must also understand the pulse sequences to be used and their effect on the appearance of the images, including the potential generation of image artifacts. Standard imaging protocols may be established and varied on a case-by-case basis when necessary. These protocols should be reviewed and updated periodically.

A. Patient Selection
The physician responsible for the examination should supervise patient selection and preparation, and be available in person or by phone for consultation. Patients must be screened and interviewed prior to the examination to exclude individuals who may be at risk by exposure to the MR environment.

Certain indications require administration of intravenous (IV) contrast media. IV contrast enhancement should be performed using appropriate injection protocols and in accordance with the institution’s policy on IV contrast utilization (see the ACR-SPR Practice Parameter for the Use of Intravascular Contrast Media [69]).

Pediatric patients or patients suffering from anxiety or claustrophobia may require sedation or additional assistance. Administration of moderate sedation or general anesthesia may be needed to achieve a successful examination, particularly in young children. If moderate sedation is necessary, refer to the ACR–SIR Practice Parameter for Sedation/Analgesia [70]. Some pediatric patients may require even deeper sedation (general anesthesia) to successfully complete the examination.

B. Facility Requirements

Appropriate emergency equipment and medications must be immediately available to treat adverse reactions associated with administered medications. The equipment and medications should be monitored for inventory and drug expiration dates on a regular basis. The equipment, medications, and other emergency support must also be appropriate for the range of ages and sizes in the patient population.

C. Examination Technique

Diagnostic-quality MRI of suspected bone, joint, and soft-tissue infections of the extremities can be performed using a variety of magnet designs (closed-bore or open-bore whole body, dedicated extremity) and a variety of field strengths [8,58,71-77]. Regardless of system design, efforts should be made to maximize signal-to-noise (SNR) ratios [78]. Field of view (FOV) should be tailored to the size of the patient and the size of the suspected abnormality [79,80]. For example, a 48-cm FOV may be appropriate for evaluating a suspected large focus of infection in the pelvis or thigh, whereas a 12-cm or smaller FOV may be appropriate for a suspected focal infection in a finger or toe. At times, additional sequences with a larger FOV will be necessary to evaluate proximal or distal spread of disease. Slice thicknesses also will vary depending on the size of the lesion. For example, a small infected focus might require 3-mm-thick slices or thinner, whereas an infection that involves the majority of one extremity may be appropriately imaged with 8-mm slice thickness. The goal should be complete coverage of the lesion with as many cross-sectional images as is reasonable. An interslice gap may be chosen to decrease signal loss due to cross talk [79] and to increase anatomic coverage, but in general should be no more
than 33% of the slice width and should not impair complete visualization of the lesion. The imaging matrix should balance intravoxel SNR with desired in-plane spatial resolution.

The size of the lesion and desired spatial resolution will also dictate the choice of receiver coil, which might be a local surface or cylindrical coil for a small lesion or a multicoil array to completely image a more extensive area (eg, the entire lower extremity for suspected necrotizing fasciitis). Ideally, the size of the coil will closely match the image volume, balancing anatomic coverage with optimal SNR. The use of a multiple-channel receiver coil or coil array may also allow the use of parallel imaging techniques to reduce overall scan time and/or improve SNR and may be useful in reducing motion-related artifacts [80-82]. For patients with suspected multifocal infection, it may be necessary to perform separate MRI examinations of the affected parts of the extremities, each using a separate coil. For example, a patient with infection involving both the hip and hand will require 2 separate studies.

When using a low-field MRI system for the extremities, other imaging parameters—such as the receiver bandwidth and number of acquisitions—will require modification to ensure adequate spatial and contrast resolution for confident diagnosis, often at the expense of longer examination times [80,83]. It may be more difficult to achieve uniform fat suppression on low-field systems using spectrally selective radiofrequency (RF) presaturation pulses, potentially necessitating the use of Dixon or short-tau inversion recovery (STIR) techniques [84-87]. Additionally, specific systems may be more prone to artifacts (eg, chemical shift artifact on high-field magnets), again requiring that parameters like receiver bandwidth are optimized to ensure that these artifacts do not detract from the diagnostic quality of the resultant images. Finally, some MRI systems may not be appropriate for specific indications. For example, high-resolution evaluation of a small focal lesion in a digit may not be feasible with a low-field open magnet, regardless of the chosen imaging parameters [88].

The examination should include images in both short and long axes. The long-axis images may be oriented orthogonal to the magnetic bore or may be angled to better identify specific anatomic structures. The coverage of the lesion ideally should include the entire infection focus [80,81] plus as much of the surrounding inflammation as is reasonably feasible.

MRI of extremity infections can be performed with a variety of pulse sequences. The choice of sequences may be tailored to optimize the examination for specific clinical questions and according to local preferences. In general, however, conventional spin-echo and fast (turbo) spin-echo images are preferred [79-81]. Gradient-recalled sequences also may be valuable, in particular in evaluating for internal areas of hemorrhage, gas, ossification, foreign material, or calcification and when imaging the larger parts of the extremity since they require shorter acquisition time compared to conventional spin-echo and fast (turbo) spin-echo sequences [80]. Gradient-echo images, however, are relatively insensitive to changes in marrow composition and would need to be supplemented by other sequences for evaluating osteomyelitis. New imaging sequences using isotropic or near-isotropic 3-D sequences can produce images with shorter scan duration but have not been evaluated for imaging extremity MSK infections [89]. For any chosen sequence, the exact recovery time (TR), echo time (TE), and flip angle used will depend on the field strength of the magnet and the relative contrast weighting desired.

An imaging protocol for an MSK infection typically will comprise >1 pulse sequence type but should include at a minimum a water-sensitive sequence with fat suppression in at least 1 plane (eg, a STIR or long TR/long effective TE fat-suppressed fast spin-echo sequence) and at least 1 T1-weighted image (a short TR/TE spin-echo or fast spin-echo sequence) without fat suppression. A STIR sequence is usually performed in 1 or 2 longitudinal planes (coronal and/or sagittal) while T1-weighted and T2-weighted sequences are usually performed in at least the transverse plane. Typically, T1-weighted images will also be performed in a long-axis plane for most bone infections. Although the water-sensitive (T2-weighted or STIR) images are the most sensitive for areas of marrow and soft-tissue edema, they may overestimate the amount of osteomyelitis; the extent of infected bone (as opposed to reactive bone) is more accurately determined with T1-weighted sequences [90-92].

In many cases it is advantageous to administer a gadolinium-based intravenous contrast agent to increase conspicuity of infected tissues, to depict rim enhancement in intraosseous and soft-tissue abscesses, and to identify joint synovitis. Typically, T1-weighted fat-suppressed sequences are obtained before and after contrast...
administration [16,19]. Subtracting the precontrast images from the postcontrast ones may be beneficial to show subtle areas of enhancement and to distinguish enhancement from adjacent fat or hemorrhage [93]. Additionally, enhancement defects within growth cartilage can be seen with intracartilaginous involvement [17]. The slice orientation on the contrast-enhanced images depends on the imaged part but is usually in the short axis plane; many practices obtain additional contrast-enhanced images in a second (long axis) plane [19,20,78,94]. In addition to showing areas of enhancement, detecting nonenhancement in infected bones and soft tissues impacts management because these nonviable tissues may require surgical debridement [61]. The decision to use intravenous contrast should be based on medical appropriateness (see the ACR–SPR Practice Parameter for the Use of Intravascular Contrast Media [69]) and should be undertaken only after consideration of potential adverse reactions (see the ACR Manual on Contrast Media [95]).

More advanced imaging techniques such as diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MR imaging, and MR spectroscopy can be used in the evaluation of bone, joint, and soft-tissue infections as well; however, their role is currently being defined [22].

Various techniques may be used to minimize artifacts that can reduce image quality [96]. Wraparound artifact, including that originating from signal received from other parts of the body, can be reduced by phase oversampling, by switching the phase and frequency readout directions, by presaturation pulses, or by radiofrequency shielding. Involuntary patient motion is best controlled by ensuring patient comfort combined with gentle immobilization when necessary [80,97]. Use of MRI systems and coils that provide high signal-to-noise ratio, such as high-field MRI systems and multichannel coils, with or without parallel imaging, can reduce overall scan duration and individual sequence scan times and may help reduce bulk motion artifacts and patient discomfort [80-82]. Flowing blood can produce ghosting artifacts, which can be reduced with presaturation pulses or the use of gradient moment nulling [80,97].

Artifacts also occur at interfaces between structures with different magnetic susceptibilities, especially where ferromagnetic materials are present in the body. Common examples include vascular filters, dental restorations, and orthopedic implants [98]. Techniques that can reduce metal artifacts include positioning of the patient with the long axis of instrumentation parallel to the main magnetic field, using fast spin-echo sequences with relatively long echo train lengths and short interspin echo spacing, substituting inversion recovery for chemical fat suppression, controlling phase and frequency encoding direction, employing view angle tilting, increasing the readout bandwidth, and decreasing voxel size [99]. Although susceptibility artifacts from surgical implants are more prevalent at higher field strengths (3T), resultant artifact can be partly offset by the use of higher-readout bandwidth [100].

Despite the broad use of parallel imaging with conventional MR imaging sequences and phased-array coils, the altered image reconstruction introduces several new artifacts and may change the appearance of conventional artifacts. The severity of artifacts associated with parallel MR imaging may be exacerbated, degrading the image interpretation. Many of these artifacts may be avoided by modifying protocols, although others require an understanding of the limitations of parallel MR imaging and when it should not be performed [101].

For interpretation, the images can be viewed on a workstation or printed. MRI examinations in patients with suspected extremity infections should be interpreted in conjunction with all available clinical data and relevant imaging studies, including current radiographs. Inflammatory, metabolic, and neoplastic conditions can mimic infections based on their MRI appearances alone. For example, rheumatoid or gouty arthritis may be impossible to distinguish from septic arthritis on MRI [25]. It may also be difficult to distinguish soft-tissue abscesses from diabetic myonecrosis, necrotic soft-tissue tumors, and post-traumatic or postoperative seromas [16]. The signal intensity of reactive marrow edema (eg, in neuropathic arthropathy) can mimic that of osteomyelitis and can enhance with intravenous contrast agents, thus causing false-positive results [102]. Furthermore, imaging artifacts also can contribute to incorrect staging/evaluation of MSK infections [98].
VI. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [103]. The report should address the presence or absence of a bone, joint, or soft-tissue infection, the extent of the infection, and enhancement characteristics. A description of the anatomic location of a lesion, including its relationships to adjacent bone, joint, and soft-tissue structures (including the skin and neurovascular bundles), should be provided. The presence or absence of any regional lymphadenopathy should be noted. Other coexistent MSK abnormalities, especially those that may impact treatment planning, should also be recorded.

VII. EQUIPMENT SPECIFICATIONS

The MRI equipment specifications and performance must meet all state and federal requirements. The requirements include, but are not limited to, specifications of maximum static magnetic strength, maximum rate of change of the magnetic field strength (dB/dt), maximum radiofrequency power deposition (specific absorption rate), and maximum acoustic noise levels.

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

Specific policies and procedures related to MRI safety should be in place with documentation that is updated annually and compiled under the supervision and direction of the supervising MRI physician and, if available, MRI physicist. Guidelines should be provided that deal with potential hazards associated with MRI examination to the patient as well as to others in the immediate area [67,68,104,105]. Screening forms must also be provided to detect those patients who may be at risk for adverse events associated with the MRI examination [67,68,104,105].

Equipment monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance Imaging (MRI) Equipment [106].

ACKNOWLEDGEMENTS

This practice parameter was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Practice Parameters – Body Imaging (Musculoskeletal) of the ACR Commission on Body Imaging and the Committee on Practice Parameters – Pediatric Radiology of the ACR Commission on Pediatric Radiology, in collaboration with the SPR and the SSR.

Principal Reviewer: Mihra Taljanovic, MD, PhD, FACR

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR
David A. Rubin, MD, FACR, Chair
Mary G. Hochman, MD
Tal Laor, MD

SPR
Jerry R. Dwek, MD
Jeffrey L. Koning, MD
Amisha J. Shah, MD
Committee on Body Imaging (Musculoskeletal)
(ACR Committee responsible for sponsoring the draft through the process)

William B. Morrison, MD, Chair
Christine B. Chung, MD
Robert K. Gelczer, MD
Dawn M. Hastreiter, MD, PhD
Viviane Khoury, MD
Jonathan S. Luchs, MD, FACP
Jeffrey J. Peterson, MD
Catherine C. Roberts, MD
Trenton D. Roth, MD
David A. Rubin, MD, FACP

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Beverley Newman, MB, BCh, BSc, FACP, Chair
Lorna P. Browne, MB, BCh
Timothy J. Carmody, MD, FACP
Brian D. Coley, MD, FACP
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn Ansley Fordham, MD, FACP
Kerri A. Highmore, MD
Sue C. Kaste, DO
Tal Laor, MD
Terry L. Levin, MD
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD

Lincoln L Berland, MD, FACP, Chair, Commission on Body Imaging
Marta Hernanz-Schulman, MD, FACP, Chair, Commission on Pediatric Imaging
Jacqueline A. Bello, MD, FACP, Chair, Commission on Quality and Safety
Matthew S. Pollack, MD, FACP, Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Sanjay K. Shetty, MD, MBA, Chair
Joshua M. McDonald, MD, Co-Chair
Jacqueline A. Bello, MD, FACP
Lincoln L Berland, MD, FACP
Jerry R. Dwek, MD
Monica S. Epelman, MD
Marta Hernanz-Schulman, MD, FACP
William T. Herrington, MD, FACP
Mary G. Hochman, MD
REFERENCES

*Practice parameters and technical standards are published annually, with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for This Practice Parameter

2011 (Resolution 22)
Amended 2014 (Resolution 39)
Revised 2016 (Resolution 4)