The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2015 (Resolution 19)*

ACR–ASNR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF CERVICOCEREBRAL COMPUTED TOMOGRAPHY ANGIOGRAPHY (CTA)

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR), the American Society of Neuroradiology (ASNR), and the Society for Pediatric Radiology (SPR).

Cervicocerebral computed tomography angiography (CTA) is a proven and useful procedure for the detection and characterization of vascular diseases and of vascular anatomy relevant to the treatment of extravascular disorders [1]. CTA may be used as the primary modality for detecting disease or as an adjunctive tool for better characterizing known disease or assessing changes over time. With the goal of reducing radiation exposure to children, magnetic resonance angiography (MRA) should be the first line of imaging in the pediatric and other vulnerable populations given the appropriate clinical setting [2,3]. While it is not possible to detect all cerebrovascular abnormalities using CTA, adherence to the following practice parameter will maximize the probability of their detection and optimize patient safety.

CTA is a medical imaging technology that exposes patients to ionizing radiation. It should only be performed under the supervision of a physician with the necessary training in radiation biology and protection to optimize patient safety. Medical physicists and trained technical staff must be available.

CTA should be performed only for a valid medical indication and with the minimum exposure that provides the image quality necessary for adequate diagnostic information.

II. DEFINITION

CTA is primarily performed for assessing the heart, arteries, or veins. It requires at a minimum a thin section helical (spiral) CT acquisition coupled with a power injection of intravenous iodinated contrast medium. Three-dimensional rendering and multiplanar reformations are important components of many CTA examinations.

III. INDICATIONS

Indications for CTA of the head and neck vessels include, but are not limited to, the diagnosis, characterization, and/or surveillance of:

1. Arterial aneurysms or pseudo aneurysms and venous varices [2-9]
2. Ischemic stroke, vasospasm and thromboembolism [9-21]
3. Intracranial hemorrhage and intraspinal hemorrhage [22-26]
4. Vasculitis and collagen vascular diseases
5. Atherosclerotic steno-occlusive disease [1,27-35]
6. Nonatherosclerotic, noninflammatory vasculopathy
7. Traumatic vascular injuries, [3,32,36-41]
8. Venous and dural sinus thrombosis (when performed as a dedicated CTV) [42-44].
9. Vascular malformations and fistulas
10. Vascular anatomic variants [32]
11. Evaluation for vascular intervention and follow-up (percutaneous and surgical) [45-57]
12. Tumors of vascular origin, with rich vascular supply or involving vascular structures [57-60].
13. Localization of arterial and venous structures for surgical planning.

For certain indications, such as cerebral aneurysms and vasospasm, it may be appropriate to limit CT angiography to include only the head, to avoid unnecessary radiation to the patient.

For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation.
IV. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR Practice Parameter for Performing and Interpreting Diagnostic Computed Tomography (CT).

A. Physician

Examinations must be performed under the supervision of and interpreted by a physician who has the following qualifications:

1. The physician should meet the criteria listed in the ACR Practice Parameter for Performing and Interpreting Diagnostic Computed Tomography (CT) and in the ACR–SPR Practice Parameter for the Use of Intravascular Contrast Media, and should be trained in radiation safety.

2. The physician is responsible for reviewing indications for the examination and for specifying the parameters of image acquisition; the route, volume, timing, type, and rate of contrast injection; and the method of image reconstruction and archiving. The physician should monitor the quality of the images, be aware of potential artifacts [61] and interpret the study. Interpreting physicians must have knowledge of the benefits and risks of the procedures. Knowledge of the head and neck anatomy including the vascular anatomy and diseases of the cerebrovascular system and their treatment is required.

3. Non-radiologist physicians meeting the aforementioned criteria additionally must have knowledge of the spectrum of nonvascular abnormalities presenting on CT scans. They should be capable of identifying and characterizing important nonvascular abnormalities that may be included on CT angiograms, such as neoplasia, sequelae of infection, trauma, noninfectious inflammatory diseases, congenital anomalies and normal anatomic variants, and any other abnormalities that may affect patient care and might necessitate treatment or further characterization through additional diagnostic testing.

4. The physician should be familiar with the use of 3-D processing workstations and be capable of performing or directing creation of 3-D renderings, multiplanar reformations, and measurements of vessel dimensions.

5. The physician should work with a Qualified Medical Physicist to optimize site specific CTA scan protocols, including minimizing the field of view, when possible.

B. Technologist

1. The technologist should have the responsibility for patient comfort, preparing and positioning the patients for the CT examination, monitoring the patient during the examination, and obtaining the CT data in a manner prescribed by the supervising physician. For the intravenous administration of contrast material for CTA, qualifications for technologists performing intravenous injections should be in compliance with current ACR policy and existing operating procedures or manuals at the imaging facility. The technologist should perform the regular quality control testing of the CT system under the supervision of a medical physicist. [ACR–SPR Practice Parameter for the Use of Intravascular Contrast Media] (ACR Resolution 51, 2001 – revised in 2007, Resolution 38)

2. The technologist performing CT examinations should be certified by the American Registry of Radiologic Technologists (ARRT) or have an unrestricted state license with documented training and experience in CT.
V. SPECIFICATIONS OF THE EXAMINATION

CT angiography is a broad term which may refer to evaluation of arterial vessels, known as CT arteriography, or evaluation of venous structures, known as CT venography. The equipment and contrast used for these examinations is the same. The scan protocols differ in the time delay to scanning following the injection of contrast.

The written or electronic request for a cervicocerebral CTA should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation. Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006)

A. Patient Selection and Preparation

Patients without absolute contraindication to the administration of iodinated contrast media are candidates for cervicocerebral CTA. In cases of relative contraindication to the administration of iodinated contrast medium measures to reduce the possibility of contrast medium reactions or nephrotoxicity should be followed to the extent that the patient’s condition allows, as defined in the ACR–SPR Practice Parameter for the Use of Intravascular Contrast Media, or an alternative vascular imaging modality should be considered, eg, magnetic resonance angiography (MRA) [62].

When possible, patients should be well hydrated, and intravenous access should be established. A 20-gauge or larger antecubital intravenous (IV) catheter should be placed ideally on the right side, to accommodate an optimal rate of 4 or 5 ml per second of iodinated contrast media. Smaller catheters that can withstand the prescribed injection rates can be used. All catheters used for the CTA examination should first be tested with a rapidly injected bolus of sterile saline to ensure that the venous access is secure and can accommodate the rapid bolus, minimizing the risk of contrast medium extravasations. The injection site should be monitored by medical personnel trained in the rapid recognition of IV extravasations. Department procedures for care of IV extravasations should be documented.

B. CT Equipment

The use of a multi-detector-row CT scanner is preferred for CTA. Helical CT acquisition is mandatory for CTA. A complete gantry rotation should be no greater than 1 second and preferably less. The scanner must be capable of detecting and reliably diagnosing pathology in the adjacent structures and end organs of the vessels.

A contrast medium power injector that allows programming of both the volume and flow rate must be used for head and neck CTA examinations.

Capability of creating multiplanar reformations, maximum-intensity projections, and volume renderings or shaded surface displays should be available for CTAs, and applied to the appropriate study. A method of bone removal for intracranial vessels is desirable. The direct measurement of vascular diameters and, when appropriate, path lengths should also be available.
C. Examination Technique

Prior to acquiring the CTA, an unenhanced helical CT acquisition may be obtained for detecting mural or extravascular hemorrhage, mapping of arterial calcification, or localization of the anatomy of interest. The section thickness for this preliminary CT acquisition is application dependent, but should not exceed 5 mm. The radiation exposure to the patient should be minimized within the limits of acceptable image quality, including optimization of kVp and mAs [63,64]. If infants and children are being imaged, there should be written guidelines for acceptable CT radiation exposure, including weight-appropriate or age-appropriate guidelines to reflect the as-low-as-reasonably-achievable (ALARA) principle. If available, dose modulation and iterative reconstruction approaches should be used, with appropriate targeted signal-to-noise ratio [65,66].

Because of substantial variations in the time required for an intravenous contrast medium injection to reach the target vascular anatomy, an assessment of patient-specific circulation time is frequently required, although not mandatory. Circulation timing can be performed using one of the following techniques [67]:

1. Intravenous injection of a small test bolus (eg, 10 to 15 ml) of contrast medium at the same rate and through the same access that will be used for the CTA followed by acquisition of sequential cine CT images at the level of the artery or vein of interest. The rate and intensity of enhancement of the lumen of interest are then used to create a time density curve. The peak of the curve is used to calculate the scanning delay post injection.

2. The use of automated or semi-automated triggering software based on monitoring of the attenuation within the vessel of interest by the CT scanner following initiation of the full dose of contrast media injection. The CTA is automatically started when the enhancement in the vessel reaches a predetermined operator selected level.

3. For CTV, administration of nonionic contrast medium (iodine, 300 to 370 mg/mL) at a rate of 3 mL sec with a 40 to 50 second prescanning delay, or a 30 second delay after the arterial bolus time, should allow adequate opacification of the venous structures minimizing flow artifacts.

Ideally the administration of iodinated contrast media for the CTA should be performed with a minimum flow rate of 4 ml per second in any patient weighing 50 or more kilograms. Higher flow rates up to 6 ml per second or greater are frequently required for larger patients, and in general higher flow rates are required for shorter acquisitions. In children, contrast medium dosing should be scaled to body weight. Injection rate should be scaled similarly and preferably delivered via powered injection. For young children and infants, a 22 or 24- gauge IV catheter may be the only option, and a 2 mL/sec injection rate may be reasonable for these patients. For patients under 50 kg a dose of 2 mL/Kg should be considered, with an option for increase in the very young patient. In summary, contrast injection parameters should be modified on an individual patient basis, and the volume of contrast medium should be selected with consideration of the patient’s weight and comorbidities that might increase the risk of nephrotoxicity. When performing cervicocerebral CTA, a right-arm injection is preferable to a left-arm injection to avoid artifacts from undiluted contrast medium in the left brachiocephalic vein. When possible, a bolus of saline following the iodinated contrast medium injection may reduce the volume of contrast medium required to achieve adequate vascular opacification.

The cervicocerebral CTA acquisition should be performed with a section thickness of 1.5 mm or less depending on the vascular territory to be assessed. The scan should be reconstructed with overlapping sections at a maximum increment of 50% of the effective section thickness. For examinations not limited to the head (such as intracranial aneurysms, vasospasm, and venous/dural sinus thrombosis), the acquisition should at least cover the aortic arch, the origin and cervical course of the subclavian and carotid arteries, the Circle of Willis, and may be extended up to the cranial vertex. In some patients, coverage can extend to include the heart, complete aortic arch, the left
atrium, the distal intracranial arteries, and the venous sinuses. In the pediatric population, anatomic coverage should be strictly limited to the vascular segments of interest, and variable mA is important in order to keep the radiation dose as low as possible. Automated tube voltage selection can also be employed in conjunction with tube current modulation, when available.

Postprocessing of the CTA by either physicians, radiologic technologists, or appropriately trained staff to provide multiplanar reformations and/or 3-D renderings is recommended [68]. Volume renderings, maximum-intensity projections, shaded surface displays, and curved planar reformations must be created by a person with knowledge of both cervicocerebral vascular anatomy and pathology to avoid misrepresenting normal regions as diseased and vice versa. Segmentation of the CT data through a variety of manual and automated means may facilitate vascular visualization and measurement of stenosis, but it must be performed with care to avoid excluding key regions of the anatomy or creating pseudolesions. Pertinent measurements of vascular dimensions should be performed [69].

When applying the North American Symptomatic Carotid Endarterectomy Trial (NASCET) method for evaluation of cervical internal carotid artery stenosis, it is important for the interpreting physician to take into consideration that the denominator measurement needs to be done well beyond the tapering bulb, which tapers over a long distance, and should only be done where the vessel walls are parallel. An alternate method uses the residual lumen diameter measured in millimeters. This approach has been validated against the NASCET methodology and has been shown to be reproducible, to be easy to implement, and to provide equivalent data. When faced with near occlusion, the NASCET methodology does not apply [68,70-75].

D. Interpretation

Cervicocerebral CTAs are preferentially interpreted on equipment that allows stacked dynamic paging of the primary transverse and the reformatted CTA sections. A complete interpretation includes review of all images, including the transverse CT sections (source images) and as indicated, multiplanar/curved reformations, volume renderings, maximum-intensity projections, and other images produced during postprocessing. On occasion, the interpreting physician will personally create postprocessed images documenting important findings that are essential to the interpretation of the study [76]. These images should be archived with the patient’s original study or other postprocessed images. Interpretation of the cervicocerebral CTA includes an assessment of the patency and caliber of the carotid and vertebral arteries, their origins, the carotid bifurcations, the intracranial arteries, possible dissection, stenosis, and aneurysmal dilatation. To the extent that venous structures are adequately opacified on CTA images (as opposed to a dedicated delayed CT venogram (CTV), evaluation of images for venous pathology is also necessary. The visible and adequately opacified veins should be commented on when appropriate. Interpretation of dedicated cervicocerebral CTV includes an assessment of the patency and caliber of the dural venous sinuses, cortical veins and internal jugular veins. The visible and adequately opacified arteries should be commented on when appropriate. The visible regional anatomy and pathology should be commented on when appropriate. Comparison with prior studies should be performed when appropriate.

VI. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings.

In addition to examining the cervicocerebral vascular structures of interest, the CTA sections should be examined for extravascular abnormalities bearing clinical relevance. These abnormalities should be described in the formal report of the examination.
VII. EQUIPMENT SPECIFICATIONS

For diagnostic quality CTA, the CT scanner should meet or exceed the following specifications:

1. Cervicocerebral CTA should be performed on a MDCT scanner, preferably with greater than or equal to 4 active detector rows.
2. Gantry rotation: 1 second or less for cervicocerebral CTA.
3. Tube heat capacity that allows for a single ≥10 second acquisitions.
4. Minimum section thickness: no greater than 3 mm, preferably no greater than 1.5 mm.

To maximize information available from the CT scan and thus derive the full diagnostic benefit for the patient following X-ray irradiation, any CT scanner used for CTA must allow display and interpretation of the full 12 bits (from 1,000 to 3,095 Hounsfield units) of attenuation information. Additionally, the display field of view must be sufficient to allow an assessment of the vasculature of interest, the end-organ, and adjacent tissues.

Appropriate emergency equipment and medications must be immediately available to treat adverse reactions associated with administered medications. The equipment and medications should be monitored for inventory and drug expiration dates on a regular basis. The equipment, medications, and other emergency support must also be appropriate for the range of ages and sizes in the patient population.

VIII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels) http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf.

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure. Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR technical standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for

Utilization of iterative image reconstruction techniques, when available, is recommended to reduce image noise and artifacts, thereby allowing significant dose reduction.

IX. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Computed Tomography (CT) Equipment.

ACKNOWLEDGEMENTS

This practice parameter was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Practice Parameters – Neuroradiology of the ACR Commission on Neuroradiology and the Committee on Practice Parameters – Pediatric Radiology of the ACR Commission on Pediatric Radiology in collaboration with the ASNR, and the SPR.

Collaborative Committee
Members represent their societies in the initial and final revision of this practice parameter.

ACR
Jacqueline A. Bello, MD, FACR, Chair
C. Douglas Phillips, MD, FACR
Ashok Srinivasan, MD
Max Wintermark, MD

ASNR
Kristine A. Blackham, MD
Steven W. Hetts, MD
David M. Mirsky, MD
Richard L. Robertson, MD

SPR
Timothy N. Booth, MD
Susan Palasis, MD
Aylin Tekes, MD

Committee on Practice Parameters – Neuroradiology
(ACR Committee responsible for sponsoring the draft through the process)

John E. Jordan, MD, FACR, Chair
Merita A. Bania, MD
Kristine A. Blackham, MD
Robert J. Feiwell, MD
Steven W. Hetts, MD
Ellen G. Hoeffner, MD
Thierry A.G.M. Huisman, MD
Stephen A. Kieffer, MD, FACR
David M. Mirsky, MD
Srinivasan Mukundan, Jr., MD, PhD
A. Orlando Ortiz, MD, MBA, FCR
Robert J. Rapoport, MD, FCR
Glenn H. Roberson, MD
Ashok Srinivasan, MD
Rathan M. Subramaniam, MD, PhD, MPH
Raymond K. Tu, MD, FCR
Max Wintermark, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Eric N. Faerber, MD, FCR, Chair
Richard M. Benator, MD, FCR
Lorna P. Browne, MB, BCH
Timothy J. Carmody, MD
Brian D. Coley, MD, FCR
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn A. Fordham, MD, FCR
Kerri A. Highmore, MD
Tal Laor, MD
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD

Carolyn C. Meltzer, MD, FCR, Chair, Commission on Neuroradiology
Marta Hernanz-Schulman, MD, FCR, Chair, Commission on Pediatric Radiology
Debra L. Monticciolo, MD, FCR, Chair, Commission on Quality and Safety
Jacqueline Anne Bello, MD, FCR, Vice-Chair, Commission on Quality and Safety
Julie K. Timins, MD, FCR, Chair, Committee on Practice Parameters and Technical Standards
Matthew S. Pollack, MD, FCR, Vice Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Jacqueline A. Bello, MD, FCR, Chair
Frank J. Lexa, MD, MBA, Co-Chair
Kimberly E. Applegate, MD, MS, FCR
Kristine A. Blackham, MD
Timothy N. Booth, MD
Sammy Chu, MD
Amanda S. Corey, MD
Kavita K. Erickson, MD
Eric N. Faerber, MD, FCR
Marta Hernanz-Schulman, MD, FCR
William T. Herrington, MD, FCR
Steven W. Hetts, MD
John E. Jordan, MD, FCR
Carolyn C. Meltzer, MD, FCR
David M. Mirsky, MD
Debra L. Monticciolo, MD, FCR
REFERENCES


12 / Cervicocerebral CTA


*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
2010 (Resolution 20)
Amended 2014 (Resolution 39)