Display Techniques for Virtual Colonoscopy

Matthew Barish, MD
Assistant Professor
Harvard Medical School
Director, International Symposia on VC
Director, 3D & Image Processing Center
Brigham and Women’s Hospital

Virtual Colonoscopy - Definition

- Thin Section Helical CT
- Gas Distended
- Cleansed Colon
- Image Reconstruction
- Image Review / Interpretation

Perception of Virtual Colonoscopy

Axial CT images are obtained

And then converted into ...

Virtual Colonoscopy

Detection of Suspect Lesions

- Display method should allow:
 - Easy means for navigation through the colon
 - Display lesion on screen for sufficient detection time
 - Differentiate polyps from normal features of colon
 - Visualize the entire colonic mucosa
 - Detection beneath obscuring fluid, tagged stool, etc.
 - Integration of CAD targets

- Purpose of Reconstruction and Review
 - Detection of suspect lesions
 - Determines sensitivity
 - Increase True Positives & Reduce False Negatives
 - Characterization of detected lesions
 - Determines specificity
 - Reduce false positives
Virtual Colonoscopy

- Detection - Display Methods
 - 2D
 - Lumen tracking
 - 3D Problem solving
 - 3D methods
 - 3D cube
 - Fly-through
 - Unfolded cube
 - Fillet
 - Flattened

2D Detection

Initial 2D Interpretation

- Stack mode – 2D Cine
- Lumen tracking:
 - The colonic lumen is followed on serial axial images from rectum to cecum
 - The entire lumen is viewed, NOT just along the centerline

Center Tracking vs. Lumen Tracking

Center Tracking

Center Tracking
Lumen Tracking - Manual

2D Detection

+++ Visualization of entire colonic mucosa
+++ Detection beneath obscuring fluid, stool, etc.
+++ Simultaneous characterization of density
+++ Integration of CAD targets
+/– Differentiation of polyps from normal colon
– Easy means for navigation through the colon
– Display lesion on screen for sufficient time

2D Detection – 3D Characterization

3D Display Methods

3D Display methods should allow:
– Easy means for navigation through the colon
– Display lesion on screen for sufficient detection time
– Perception of polyps from normal features of colon
– Visualization of entire colonic mucosa
– Detection beneath obscuring fluid, tagged stool, etc.
– Integration of CAD targets

3D Navigation

– Determine air-filled structures
– Extract colon
– Determine centerline for fly-through

3D Endoluminal Review

GE
TeraRecon
Viatronix

Philips
Vital Images
Siemens
Newer Visualization Strategies

- **3D Review Methods**
 - Increase the visible surface area per unit time
 - Increased time for lesion detection (longer screen dwell time)
 - Increased conspicuity of small lesions
 - Allows for simultaneous detection and characterization of lesion morphology

 ... but need to confirm or provide means of viewing the entire colonic mucosa

Problems with Primary 3D Fly-through

- Difficulty to see around folds

- Inability to confirm complete colonic visualization

Polyp Hidden Behind Fold

Problems with 3D Fly-through

- With endoluminal 3D reading, one needs to verify that one has visualized the entirety of the colonic surface

 - Complete antegrade and retrograde flight paths

 - Mucosal “painting”

 OR

 - Offer display method capable of viewing behind folds during review

Mucosal “Painting”

Solving the “Hidden Colon” Problem

- Paint visualized areas of the colon, then...

- Visualize un-seen areas of colon with 2nd look

 OR (equally valid) provide:

 - Advanced display technique

 - Allows visualization around / behind folds;

 Eliminate need for mucosal painting

 - Added benefit of increase the amount of displayable colonic surface in a given unit of time
Virtual Colonoscopy

Interpretation and Display Methods

- **2D**
 - Lumen tracking
 - 3D Problem solving
- **3D methods**
 - 3D cube
 - Fly-through
 - Fillet view (opened colon)
 - Flattened
 - Unfolded cube

Fillet Views

- Instead of looking down the colon, the view faces the wall

Fillet view

Courtesy of: Rendoscopy

Fillet view

Virtual Colonoscopy

Interpretation and Display Methods

- **2D**
 - Lumen tracking
 - 3D Problem solving
- **3D methods**
 - 3D cube
 - Fly-through (and Fly-around)
 - Fillet
 - Unfolded cube
 - Flattened
In addition to looking down the colon, the view faces in all directions (including reverse)

Courtesy of Philips
Panoramic View - Unfolded Cube

Virtual Colonoscopy

- Interpretation and Display Methods
 - 2D
 - Lumen tracking
 - 3D Problem solving
 - 3D methods
 - 3D cube
 - Fly-through
 - Fillet
 - Unfolded cube
 - Flattened (Virtual Pathology)

Fillet view – Flattened & Straightened

Flattened Colon Display

Flattened Colon Display

Combined Display

 Courtesy of: Siemens

 Courtesy: GE Medical Systems

Courtesy: GE Medical Systems
Detection of Suspect Lesions

- Display method should allow:
 - Easy means for navigation through the colon
 - Display lesion on screen for sufficient detection time
 - **Visualization of entire colonic mucosa**
 - Perception of polyps from normal features of colon
 - Detection beneath obscuring fluid, tagged stool, etc.
 - Integration of CAD targets

Visualization of the Entire Colon

- New visualization methods try to eliminate need for "mucosal painting" by viewing entirety of colonic mucosa

Radiology 2003;228:878-885

Detection of Suspect Lesions

- Display method should allow:
 - Visualization of entire colonic mucosa
 - Easy means for navigation through the colon
 - Display lesion on screen for sufficient detection time
 - Perception of polyps from normal features of colon
 - Detection beneath obscuring fluid, tagged stool, etc.
 - Integration of CAD targets
Electronic Cleansing - Subtraction

Display Techniques

- Purpose of Reconstruction and Review
 - Detection of suspect lesions
 - Determines sensitivity - Increase True Positives & Reduce False Negatives
 - Characterization of detected lesions
 - Determines specificity - Reduce false positives

Characterization of Lesions

- Display method should allow for rapid characterization
 - Morphology
 - Polyps don't have angular shapes (polyps are roughly hemispheric)
 - Stool can appear cubic or needle-like
 - Density
 - Polyps have soft tissue density (lipoma has fat density)
 - Stool can be very high or low density
 - Mobility
 - Stool shows positional change from prone to supine
 - BUT not all stool moves and not all that moves is stool

Lesion Characterization

- Morphology
 - Polyps don't have angular shapes (polyps are roughly hemispheric)
 - Stool can appear cubic or needle-like
- Density
 - Polyps have soft tissue density (lipoma has fat density)
 - Stool can be very high or low density
- Mobility
 - Stool shows positional change from prone to supine
 - BUT not all stool moves and not all that moves is stool

Morphology

- Main weakness of 2D review:
 - Does not allow for full demonstration of lesion morphology
 - Complex lesion shapes can be difficult to interpret
 - Detection of small lesions may be limited

Complex Fold or Polyp?
Polyp on Fold

- Morphology
 - Polyps don’t have angular shapes (polyps are roughly hemispheric)
 - Stool can appear cubic or needle-like
- Density
 - Polyps have soft tissue density (lipoma - fat density)
 - Stool can be very high or low density
- Mobility
 - Stool shows positional change from prone to supine
 - BUT not all stool moves and not all that moves is stool

Density – Soft Tissue

- Polyp
- Soft Tissue
- Stool
- Gas Density within lesion
- Lipoma
- Fat Density

Lesion Characterization

- Main difficulty with primary 3D interpretation is the “inability” to characterize lesion density without 2D review
 - Difficult to differentiate polyp from stool
- Primary 3D with 2D problem-solving
 - Detection on 3D review with 2D images used for characterization

Characterization Difficulty - Density

- Stool
- Polyp
- Lipoma

Problems with Primary 3D Fly-through

- Pneumatosis Cystoides
- Cecal Mucocele
- Barium Tagged Stool
Translucency

- Application of alternate color-opacity histogram to the volume-rendered image, allows for simultaneous display of density during 3D review.

![Graph showing the application of alternate color-opacity histogram](image)

From: Pickhardt AJR 2004; 183:429-436

Characterization Difficulty - Density

- **Stool**
- **Polyp**
- **Lipoma**

![Images of stool, polyp, and lipoma](image)

Pneumatosis Cystoides
Barium Tagged Stool
Cecal Mucocele

Lesion Characterization

- **Density**
 - Polyps have soft tissue density (lipoma has fat density)
 - Stool can be very high or low density

- **Morphology**
 - Polyps don’t have angular shapes (polyps are roughly hemispheric)
 - Stool can appear cubic or needle-like

- **Mobility**
 - Stool shows positional change from prone to supine
 - BUT not all stool moves and not all that moves is stool
 - Polyps maintain position between prone and supine

![Images showing stool mobility](image)

Mobility - Stool

- **Supine**
- **Prone**
Mobility

- Need to confirm position between prone and supine
 - Positional registration
 - Rotational registration

Positional Registration

![Image of positional registration](Courtesy of Viatronix Courtesy of Vital Images Works in Progress Pending FDA Approval)

Uses a combination of length and user defined points along centerline to create two registered datasets

Rotational Registration

![Image of rotational registration](Courtesy of Dr. Ron Summers Virtual Endoscopy & CAD Lab NIH Clinical Center)

Uses tenia coli to create coordinate system to register datasets

Conclusion

- Accurate interpretation of Virtual Colonoscopy is based on the ability to detect and characterize lesions.

- New display methods will continue to change and improve our ability to accomplish both of these tasks in a reasonable amount of time