Using AI tools to Drive Quality and Ensure Patient Safety Across the Radiology Practice

Jason Wiesner, MD, MS, MBA, Diagnostic Imaging Service Line Medical Director, Sutter Health

@xrayviznMD
Disclosures

• Salary—Sutter Health system office, Sutter Health Information Services, Sutter Medical Foundation, Sutter Medical Group
Sutter Health at a Glance

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians</td>
<td>18,000</td>
</tr>
<tr>
<td>Network and affiliate employees</td>
<td>53,000 +</td>
</tr>
<tr>
<td>Patients cared for each year</td>
<td>3.5 million</td>
</tr>
</tbody>
</table>
Total Diagnostic Imaging Assets Managed by Radiology $438,930,000

Sutter Health Imaging Services
Annual Exams: Approx 3.2 million
Acute Facilities: 23
Outpatient Centers: 67
Radiology Groups: 11
Referring Physicians: 15-18K
Imaging Team Members: >2500
Learning Objectives

• Review the current literature relative to the clinical impact of sources of error in healthcare with a focus on Radiology

• Discuss why we are focusing on the wrong problems in AI and why I believe we should focus on “Augmented AI” in Radiology

• Share Sutter Health experience using AI tools in diagnostic imaging with a focus on Quality and Safety applications
Artificial Intelligence—hype versus hope

• AI is already all around us, whether we are conscious of it or not.
 • Google Translate
 • Gmail Autocomplete
 • Voice assistants (Siri, Alexa)
 • Vehicle Navigation and driver assist
 • NLP use in Coding and billing
 • NLP use in radiology report analysis, data mining, and quality review
Artificial Intelligence—hype versus hope

Here’s why one tech investor thinks some doctors will be ‘obsolete’ in five years

Published Fri, Apr 7 2017 2:28 PM EDT | Updated Fri, Apr 7 2017 5:15 PM EDT

Christina Farr @CHRISYFARR

Artificial Intelligence for Medical Imaging Market to Top $2B

2020 ACR-RBMA Practice Leaders Forum
Artificial Intelligence—hype versus hope

Assisted Intelligence
Improves the value of existing activities, such as face recognition at the airport, so that agents who perform immigrations checks can proceed more quickly.

Ex: CAD

Augmented Intelligence
Brings new capabilities to human activity, such as a chess program that suggests possible moves to human players, who then play better than an un-aided human could.

Ex: Identifying at-risk populations through EHR data analysis

Autonomous Intelligence
Makes decisions without human input or oversight.

Ex: Full autonomous vehicles.

Fully autonomous trading.
Ask the Audience:
Who here owns a car with...
Blind Spot Detection
Lane Assistance
Automatic Braking

FULL AUTO BRAKE
Fully Autonomous Driving?
Radiology applications of AI in Quality and Safety

Automation is hard!

So how do we assist and augment our radiologists?
Making Radiology “Better” means either...

- Increasing productivity
- Increasing quality
Making Radiology “Better” means either...

Increasing productivity

Considerations
- Practice patterns vary between sites and radiologists
- Top 100 most common diagnoses cover only 50% of average radiologist workflow
- Interfaces are proprietary, hard to plug and play solutions.

Increasing quality

Considerations
- Relatively uncommon (3-5% of all scans)
- Time spend on higher quality means less time spent on productivity.
- Sensitive topic to address
- Quality is not always financially justifiable
Making Radiology “Better” means either...

Increasing productivity

Considerations
- Practice patterns vary between sites and radiologists
- Long tail - 100 most common diagnoses cover only 50% of average radiologist workflow
- Workflow interfaces are proprietary, hard to plug and play solutions.

Increasing quality

Considerations
- Relatively uncommon (3-5% of all scans)
- Time spent on higher quality means less time spent on productivity.
- Sensitive topic to address
- Quality is not always financially justifiable
Diagnostic Errors are a **System**-level Problem
What are we doing today for Quality Improvement?

<table>
<thead>
<tr>
<th>Score</th>
<th>Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Concur with interpretation</td>
<td></td>
</tr>
</tbody>
</table>
| 2. Discrepancy in Interpretation/ not ordinarily expected to be made (understandable miss) | 2a. Unlikely to be significant
2b. Likely to be significant |
| 3. Discrepancy in Interpretation/ should be made most of the time | 3a. Unlikely to be significant
3b. Likely to be significant |
| 4. Discrepancy in Interpretation/ should be made almost every time - misinterpretation of findings | 4a. Unlikely to be significant
4b. Likely to be significant |

*Score 2b, 3 or 4 should be reviewed by QA Chair/Committee for internal peer review before submission to ACR.

[For Score 2b, 3 or 4]

Has the score been reviewed by Chair/Committee?
- Yes
- No
- N/A

Required explanatory comments (if Score 2b/3/4 and has not been reviewed. Max. 450 characters)
Radiology applications of AI in Quality and Safety

- **Peer Review**: Partial (1-3%), unfocused, and time delayed.
- **Peer Learning**: Opportunistic and focused. Attempts to improve quality.

- Consequently, medical error is universally under-reported and under-resourced
The Literature on Diagnostic Errors

- **CXR**
 - 40% False Negatives

- **Mammography**
 - 41% False Negatives

- **CT**
 - 31-37% Discordance
| 1000 Patients |
1000 Patients
2% Overread
1000 Patients
2% Overread
4% Error Rate
Serious misdiagnosis-related harms in malpractice claims: The “Big Three” – vascular events, infections, and cancers
The most common diagnoses associated with diagnosis-related claims (failure, delay, or wrong) were:

- Malignant neoplasm of breast: 15%
- Malignant neoplasm of bronchus or lung: 7%
- Spinal epidural abscess: 3%
- Malignant neoplasm of kidney: 2%
- Fracture of neck or femur: 2%

Clear clinical impact

- Stage 1A Non-Small Cell: 49%
- Stage 1B Non-Small Cell: 45%
- Stage 2A Non-Small Cell: 30%
- Stage 2B Non-Small Cell: 30%
- Stage 3A Non-Small Cell: 14%
- Stage 3B Non-Small Cell: 5%
- Stage 4 Non-Small Cell: 2%
- Small Cell Lung Cancer: 6%
“Limits on analysis of data by humans alone have clearly been exceeded, necessitating an increased reliance on machines”.

Algorithms are plentiful

Lung Cancer Among the Most Likely Conditions to Harm Patients who are Misdiagnosed

By Peter Hofland, Ph.D. - July 12, 2019
Guiding Principles

- **No Workflow Impact** – The technology is not intrusive, allowing physicians to practice without interruption and without changing the way they work. Physicians make the decisions and maintain control of the diagnostic process.

- **On-Premises Deployment** – HIPAA compliant, on premises. *PHI never leaves the four walls of the institution and is completely secure.*

- **Vendor-Neutral** – There are 700+ AI companies, 200 founded in the past year, with the market leader changing every quarter for every diagnostic use case.
• **Error Reduction = Better Patient Care** – the best predictor of outcomes for critical diagnosis like cancer is early detection.

• **Improve Patient Follow-up** – patients are prompted to return for valuable follow-up care and state within the health system.

• **Risk Mitigation** – the platform helps avoid malpractice suits that lead to financial loss, reputational harm, and physician burnout.
Sutter’s Solution

✔ Set success metrics (KPI’s) in collaboration with clinical, administrative, risk/compliance, and operational leaders.

✔ Identify a well-backed startup that offered a fully vendor-managed on-premises algorithm deployment platform that met our IT requirements.

✔ Implement machine vision and natural language algorithms in a post-interpretation workflow as a “second read.”

✔ Convene a group of senior subject matter expert radiologists to be deputized by our quality committee as reviewers.

✔ Develop a closed loop workflow that ensured rapid resolution of identified findings.

✔ Tracking and Reporting on the outcomes of the findings generated.
AI Workflow:

Scans reviewed by AI: Use machine learning and computer vision analysis to detect lesions

SME review of any studies flagged with a discrepancy

Natural Language Processing to analyze reports for findings and match to image

Addendum and follow-up care
A 3.6 cm ill-defined early enhancing lesion in S6 of liver (Ser/Img: 1/325), with nodular enhancement in arterial phase and centripetal enhancement in portal venous phase. Hemangioma was suggested. Some poor enhanced areas in the lesion, maybe due to partial thrombosis. A 7 mm early enhancing lesion in S7 of liver (Ser/Img: 1/316), with persistent enhancement in portal venous phase. Hemangioma was suggested. A tiny ill-defined early enhancing lesion in S4 of liver (Ser/Img: 3/312), with isodensity in portal venous phase, favor AP-shunting. Fatty infiltration of liver. A stone in left kidney.

No mass or nodular lesion in the visible lung. No abnormal finding in the spleen, pancreas, gallbladder and bilateral adrenal glands. No definite evidence of enlarged lymph nodes was noted at paraaortic retroperitoneum. Fatty infiltration of liver. A stone in left kidney.
Cases
Sutter experience
Sutter experience
Sutter experience
Sutter experience
Sutter experience - 90 Days
Data from 8/11 to 11/20

All Studies:

Studios screened without any action required: 9,729
Missed Nodules: 427 (Reviewed Flags) - 83

Radiologist confirmed missed nodules:

RADPEER Score Assigned:
- 28% (23) - 2a
- 33% (27) - 2b
- 11% (9) - 3a
- 29% (24) - 3b

Changes in downstream care:

Addendums added: 31
Rad/Path follow-up: 19 (as of Dec 2019)
Proud to have the most comprehensive cancer diagnosis quality program in Sacramento.
Summary:

• We conclude that the use of AI tools in peer review is of great benefit to peer review efficiency as well as to the detection of clinically significant missed findings in a large patient population.

• As AI tools proliferate and the coverage of pathologies and modalities increases, the impact of AI aided peer review and quality assurance will result in a dramatic reduction in medical error in radiology.
Use of Post-Interpretation AI Tools to Catch Potential Errors Before Clinical Impact

Other Key Learnings:
Use of Post-Interpretation AI Tools to Catch Potential Errors Before Clinical Impact

Key Learnings:

• Data

• Partnership with vendors
 • Open platform
 • Processing power
 • Talent

• Leadership willingness and “buy in”
Use of Post-Interpretation AI Tools to Catch Potential Errors Before Clinical Impact

Key Learnings:

• Data:
 • Sutter EHR Imaging Archive:
 • How many Images are in the VNA today?
 • >3.5 Billion Images
 • How many patients exist in the VNA as of 12/2019?
 • >13 million unique patients
 • How much storage has been utilized?
 • 3.0 PB

• Data security!
 • On-premises storage, processing
Use of Post-Interpretation AI Tools to Catch Potential Errors Before Clinical Impact

Key Learnings:
• Partnership with Vendor
Use of Post-Interpretation AI Tools to Catch Potential Errors Before Clinical Impact

Key Learnings:

• **SH Leadership Buy-in**

Radiology applications of AI in Quality and Safety—Sutter Health experience

Key learnings:

- **Explainability**: the level to which the AI’s internal mechanics are explainable in human terms
 - Critical to adoption and success in healthcare
 - The human element: “black box AI” is not sufficient in healthcare
- **2019 Article in the Journal of Consumer Research**:
 - consumers are reluctant to utilize healthcare provided by AI
 - consumers exhibit lower reservation prices for healthcare provided by AI
 - Derive negative utility if a provider is automated rather than human
Radiology applications of AI in Quality and Safety—Sutter Health experience

Key learnings 2:

• User acceptance
 • Disillusionment: *we still miss nodules*

• What to do with the False Positives?
 • 2 hours/week of non-interpretive time!
 • Will improve over time
Radiology applications of AI in Quality and Safety—Sutter Health experience

What about liability concerns for Radiologists that use AI?

• No case law on liability involving medical AI
• “because current law shields physicians from liability as long as they follow the standard of care, the “safest” way to use medical AI from a liability perspective is as a confirmatory tool to support existing decision-making processes, rather than as a source of ways to improve care.”

Quality will be how we move our specialty forward

- **Error Reduction = Better Patient Care** – the best predictor of outcomes for critical diagnosis like cancer is early detection.

- **Improved Patient Follow-up/Retention** – patients are prompted to return for valuable follow-up care and stay within the health system.

- **Risk Mitigation** – “Safety net” AI tool helps avoid malpractice suits that lead to financial loss, reputational harm, and physician burnout.

- **Brand and Market Share** – negative publicity is driven by missed diagnoses and malpractice. We can differentiate on quality.

- **Transition to Value** – improved quality ultimately positions us better for payer negotiations and government incentives under increasingly common risk-based contracting.

Competing on cost/productivity vs quality will be a race to the bottom
WE NEED TO STAY FOCUSED ON OUR MARKETING PRIORITIES AND NOT GET DISTRACTED BY EVERY SHINY NEW LOOK, SQUIRREL!
“It is important to take on the challenge of identifying success measures for AI systems by their impact on people’s lives”

-Barbara Grosz, Higgins Professor of Natural Sciences at Harvard University
References

References

• The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populations. H Singh, AND Meyer, EJ Thomas - BMJ Qual Saf, 2014 - qualitysafety.bmj.com

• Cognitive and System Factors Contributing to Diagnostic Errors in Radiology Cindy S. Lee, Paul G. Nagy, Sallie J. Weaver, and David E. Newman-Toker American Journal of Roentgenology 2013 201:3, 611-617
