“Reality Check:” Augmented Reality as an Educational Tool For Diagnostic and Interventional Radiology

Jared Meshekow MD MPH1, Sabrina Kohanzad2, Yehuda Herman2, Monica Rizkalla MD3, Ekramul Gofur MD3, Kevin Thompson MD3, Perry Gerard MD MBA FACR2,3

1Temple University Hospital/Lewis Katz School of Medicine, Philadelphia, PA
2New York Medical College, Valhalla, NY
3Westchester Medical Center, Valhalla, NY
Disclosures

The authors have no financial interests to disclose.
Objectives

• To provide a brief overview of augmented reality (AR) systems and how they can be useful in diagnostic and interventional radiology education.

• To understand the range of potential applications and pitfalls of augmented reality devices, describe how they can be integrated into radiology education.
What is Augmented Reality?

- Augmented introduces a computer-generated, 3D simulation to the user, allowing individuals to truly immerse themselves in that experience using visual, auditory and sensory modalities.
Available Augmented Reality Devices on the Market

- Oculus Quest
- Magic Leap
- Microsoft HoloLens
- Epson Moviero
- Google Glass
- Raptor AR
- ThirdEye
- Vuzix Blade

Clockwise: Magic Leap, HoloLens, Epson Moviero, Oculus Quest, ©
Healthcare and Radiology Centric Applications

Each individual AR system have varying software environments for simulation and medical education. Numerous additional developer solutions exist with varying device compatibility. Individuals/institutions can also create/incorporate “home-grown” programming.

Examples include:

- HoloLens- HoloAnatomy, HoloHuman, CAE VimedixAR
- Magic Leap- BrainLab, SynThink, XRHealth
- Oculus – Osso VR, Facebook Reality Labs
Applications for Diagnostic Radiology Education

- Immersive experiences with cross-sectional imaging (CT, MRI, Ultrasound). Allowing users to interact in both a 2D and 3D environment across numerous body parts and pathologies.
 - e.g. UCSF- Temporal bone and cardiac anatomy.
- Interactive training to respond to rarely encountered scenarios in everyday practice, i.e. contrast reactions or ferromagnetic objects in the MRI suite.
- Creation of a collaborative communication platform between radiologists and referring physicians to discuss complex and difficult cases.
Applications for Interventional Radiology Education

- Simulations for both routine and complex interventional procedures prior to performing them in real-world patients.
- Providing a heads-up and interactive display to correlative pre-procedural imaging during the procedure.
- Real-time collaboration with faculty during procedures for training and education.
Strategies to Incorporate AR into Radiology Education

• Purchasing AR device(s) and/or partnering with a hardware/software manufacturer or supplier.

• Designating a point-person and or informatics specialist to create a curriculum.

• Creation of an in-institution training program specific teaching folder to integrate interesting anatomy and pathology for AR education.
Potential Pitfalls

- Cost
- Compatibility and integration.
- HIPPA Compliance.
- Rapidly evolving hardware/software with potential expiration.
- Individual program adoption and support.
Augmented reality introduces a creative platform in teaching diagnostic and interventional radiology that fully immerses the learner in a three-dimensional, 360-degree view of the human body. This active learning process will allow for greater efficacy in the interpretation of diagnostic studies and increased confidence when performing interventions.
References

