Best Practices: Evidence-based Imaging Algorithm for Pathologic Nipple Discharge in Women

Joshua Amaya, BS; Yin Xi, PhD; Stephen Seiler, MD; Başak Dogan, MD

University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX
Disclosures

The authors have no relevant conflicts of interest
Introduction

- Pathological nipple discharge (PND) can be benign or malignant and tends to be unilateral, spontaneously from a single duct, and serous or blood-stained.

- Intraductal papilloma is the most common cause of PND (21-57%), followed by ductal ectasia and fibrocystic change (14-43%). Cancer is identified in etiology in 5-16% of patients with PND.

- Most commonly, mammogram, ultrasound and MRI is performed. There is a very wide range of diagnostic performance
 - **Mammo** – Sensitivity: 13%, Specificity: 97%
 - **US** – Sensitivity: 73%, Specificity: 97%
 - **MRI** – Sensitivity: 75%, Specificity: 100%
Purpose

• While these modalities are used complementarily, it is unclear when MRI is warranted. It is also unclear and if surgical excision is needed if imaging is negative.

• Therefore, our aim is to use contemporary sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) data to develop a best practices algorithm for evaluating pathologic nipple discharge (PND).
Methods- Search criteria, inclusion and exclusion

Studies between January 1, 2000, and May 5, 2021 that published sensitivity, specificity, PPV, and/or NPV data on all imaging modalities used to diagnose the etiology of PND were reviewed.

Inclusion
- Title/abstract pertains to pathological, spontaneous, bloody and unilateral discharge
- Sensitivity, specificity, PPV, and/or NPV data available
- Female gender
- Age, 40 or older
- Mammography and/or ultrasound and/or MRI performed for diagnosis
- Ductogram was not included

Sensitivity and specificity end point:
1. Detection of malignancy in etiology.
2. Detection of benign or malignant etiology.

Diagnostic odds ratio and AUC were calculated.
Methods- Analysis

Forest plots were performed to pool sensitivity and specificity of Mammography, Ultrasound and MRI in identifying

A) Any etiology (duct ectasia, benign papilloma, periductal inflammation, ductal carcinoma in situ or invasive cancer)

B) Cancer

To summarize the sensitivity and specificity data for study as a single number, logarithm diagnostic odds ratios (DOR) were calculated.

Summary receiver operator characteristic (ROC) plots were generated to assess the performance of each modality and show the precision of each studies sensitivity and specificity data.

Additionally, In order to detect performance against all possible detection thresholds, posterior distribution of area under curve (AUC) was performed
Results

497 articles

44 met inclusion criteria
453 articles excluded

Articles excluded for review/meta-analysis (n = 7), no sensitivity/specificity data for mammography, ultrasound or MRI (n = 9), not including raw data (n = 5), less than 10 patients (n = 2)

22 studies

22 studies (N = 2454) patients with PND analyzed
MRI was significantly more sensitive in identifying malignancy compared to mammo, US and mammo + US.

Mammo = 0.44
Ultrasound = 65%
Mammo+US = 63%
MRI = 84%
Mammography had the highest specificity for ruling in malignant lesions

Mammo = 0.91
Ultrasound = 0.59
Mammo+US = 0.88
MRI = 0.66
MRI had the highest DOR for detecting malignancy out of the other single modalities. The use of mammography and ultrasound together had similar DOR but was only based off three studies.

MRI had the highest DOR for detecting any etiology of pathologic nipple discharge at 4.42 compared to mammography (1.60), ultrasound (2.17) and mammography plus ultrasound (2.92).
MRI had the highest area under the curve (AUC) to detect any PND etiology

AUC score interpretation in assessing diagnostic accuracy:
- 0.6 to 0.7 – poor
- 0.7 to 0.8 – fair
- 0.8 to 0.9 – good
- 0.9 – excellent

Curved lines demonstrate the precision of all the studies.
Suggested evidence-based diagnostic imaging algorithm in patients with nipple discharge

- **NON PATHOLOGIC**
 - Screening/reassurance
- **NIPPLE DISCHARGE EVALUATE**
 - **PATHOLOGIC**
 - MRI
 - Diagnostic mammo and US
 - Surveillance
 - Positive
 - Negative
 - **US-guided biopsy**
 - **MRI-guided biopsy**
Conclusion

- MRI is the most accurate imaging modality for detection of breast cancer and benign lesions in patients presenting with pathological nipple discharge.

- Our analysis supports the use of MRI as the initial imaging test to be conducted in this patient population.

- It is reasonable to offer the patient reassurance and elect for surveillance as opposed to surgical evaluation in the setting of a negative MRI.
Limitations

- PND mainly in patients 40 years and older.
- Ultrasound may be more appropriate for women younger than 40.
- Multiple papers had differing criteria for what constitutes pathologic discharge.
- Multiple studies excluded patients with positive mammogram and/or US results.

Any Questions? Contact me at Joshua.Amaya@utsouthwestern.edu