Voice Dictation Errors in Pediatric Radiology

University of Arkansas for Medical Sciences
Arkansas Children’s Hospital
No Disclosures
Introduction

Replacement of transcription by voice dictation with speech recognition software in pediatric radiology has resulted in near simultaneous report dictation, review and approval.
Introduction: Voice Dictation and Errors

• Increased error rates with voice dictation have been identified in prior studies\(^1\).

• Radiologists underestimate the error frequency in their reports and the reports of others\(^2\).

• Errors can be categorized based on the grammatical mistake or the clinical significance.
 • Punctuation mistake versus non-sense phrase
 • Does or does not alter the meaning of the report
Purpose

• **Hypothesis:** Radiology reports generated by voice dictation are susceptible to multiple error types.

• **Purpose:**
 - Identify the frequency of voice dictation errors in a pediatric radiology group practice
 - Calculate the radiologist error rates
 - Categorize common error types
 - Compare error rates using different report types
Methods and Materials

• All radiology reports dictated on 3 randomly selected dates were reviewed by 2 staff radiologists. Reports were reviewed for:
 • Dictating radiologist name
 • Examination modality
 • Dictation template style*
 • Presence of errors

*Dictation template styles included: normal, structured, narrative
Methods and Materials

• Error classification:
 • **Type 1**: dropped or modified connecting words
 • **Type 2**: modified nouns or verbs
 • **Type 3**: nonsense words or phrases

• Error rates calculated for each radiologist dictating >30 studies

• Statistics: Fisher’s exact test (2-tailed) was used to
 • Determine the significance of different error rates by dictation style
 • Evaluate the significance of frequency of different error types.
Methods and Materials

Report classification

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Template</td>
<td>Pre-populated text report for a normal examination. No modification is needed to complete.</td>
</tr>
<tr>
<td>Structured Reporting</td>
<td>Standardized report in an organized format with some modification needed to complete open fields.</td>
</tr>
<tr>
<td>Narrative</td>
<td>Individually created, free text report, usually in a paragraph format.</td>
</tr>
</tbody>
</table>

Error classification

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Dropped or modified connecting words</td>
<td>dropped “an” or “the” or missing punctuation</td>
</tr>
<tr>
<td>Type 2</td>
<td>Modified nouns or verbs that include sound alike words</td>
<td>“valgus” instead of “bowel gas”</td>
</tr>
<tr>
<td>Type 3</td>
<td>Nonsense phrases or terms or other significant alterations</td>
<td>In describing a coin in the esophagus, “The configuration of the harmonic suggests point."</td>
</tr>
</tbody>
</table>
Results

Total Number of Reports Reviewed in 3 days

- Computerized Radiography: 70%
- Ultrasound: 14%
- Computerized Tomography: 5%
- MRI: 4%
- Fluoroscopy: 4%
- Interventional Radiology: 2%
- Nuclear Medicine: 1%
- Bone Densitometry: 0%
Results: 229 errors in 209 (29%) studies

Total reports reviewed (768)

- Normal Template (83 reports): Errors: 0 (0%)
- Structured Reporting (57 reports): Errors: 7 (12%)
- Narrative (628) reports: Errors: 201 (32%)

Narrative dictation style accounted for >95% of errors. Type 1 errors were the most common. Error rates among 9 radiologists ranged from 14-41%.
Results: Error Rates and Statistics

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Total Number of Reports</th>
<th>Percentage of Errors in the Reports (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Template</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>Structured Reporting</td>
<td>57</td>
<td>12</td>
</tr>
<tr>
<td>Narrative</td>
<td>628</td>
<td>32</td>
</tr>
</tbody>
</table>

Narrative report style had significantly more errors than structured reports (p 0.0014).

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Number of Reports</th>
<th>Number of Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>123</td>
<td>129</td>
</tr>
<tr>
<td>Type 2</td>
<td>71</td>
<td>74</td>
</tr>
<tr>
<td>Type 3</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

Type 1 errors significantly more frequent than Type 2 errors (p 0.0001). Type 2 errors significantly more frequent than Type 3 errors (p 0.0001).
Conclusion

• Voice dictation errors were common, but varied widely in frequency among the radiologists.
• Type 1 errors (dropped or modified connecting words and missing punctuation unlikely to change the meaning of the report) were the most common error type.
• Normal templates and structured reporting significantly reduce the number of errors.
Clinical Relevance/Application

• Radiology reports are the primary means of communication between radiologists and ordering providers.
 • Errors can adversely impact patient care.
 • Errors can be confusing to the clinician and leave an unfavorable impression of radiology.
 • Patient access to radiology reports through patient portals is increasing and errors can lead to patient dissatisfaction.
Clinical relevance/application

• Solutions:
 • Increased awareness of common errors can help radiologists identify and correct them before final report approval.
 • Increased use of structured reporting and templates can reduce errors.
 • Further advances in technology are likely to improve voice dictation accuracy and further reduce error rates.
References

