COMPARATIVE PHANTOM LIPID STUDY UTILIZING VARIOUS MRI SEQUENCES

Venkateswaran Ramakrishnan B.S¹ and Daniel R. Karolyi M.D/PhD²

¹Virginia Tech Carilion School of Medicine ²Department of Radiology, Carilion Roanoke Memorial Hospital

Financial Disclosures

No financial disclosures

Hepatic Steatosis

- Also known as "Fatty Liver"
- Main causes are from obesity, insulin resistance and hyperlipidemia¹
- Affects 25% of the US population, affecting the Hispanic population more than others¹
- Can lead to steatohepatitis, cirrhosis possibly leading to hepatocellularcarinoma²

¹Non-Alcoholic Fatty Liver Disease. *Non-Alcoholic Fatty Liver Disease*. American Liver Foundation, n.d. Web. ²Lonardo A, Loria P, Adinolfi LE, Carulli N, Ruggiero G. Hepatitis C and steatosis: a reappraisal. J Viral Hepat. 2006;13(2):73-80

Background

- Liver Biopsy (Gold Standard)
 - Error of overestimation in sampling error
- Non-invasive methods
 - CT
 - Ultrasound
 - MRI (Magnetic Resonance Imaging)
 - DIXON Method
 - In/Out Phase
 - Magnetic Resonance Spectroscopy
 - Six different spectral lipid peaks exist in vivo

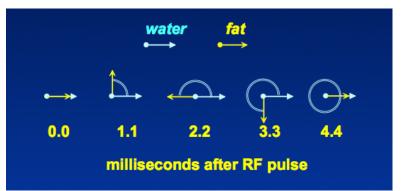


Figure 1. In/Out of Phase Imaging¹

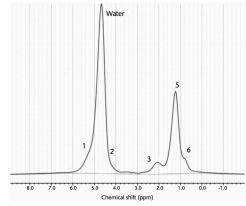


Figure 2. Six Lipids shown in MR Spectropscopy²

 1. Outwater EK, Blasbalg R, Siegelman ES, Vala M.
 Figure

 Detection of lipid in abdominal tissues with opposed-phase gradient-echo images at 1.5T: techniques and diagnostic importance.

 Radiographics 1998; 18:1465-80

2. Sharma P, Altbach M, Galons J-P, Kalb B, Martin DR. Measurement of liver fat fraction and iron with MRI and MR spectroscopy techniques. *Diagnostic and Interventional Radiology*. 2014;20(1):17-26. doi:10.5152/dir.2013.13124.

Objectives/Hypothesis

- To develop an accurate tool in measuring hepatic steatosis
- To compare In/Out of Phase Imaging, 2 Point DIXON, Average 2 Point DIXON, 3 Point DIXON and MR Spectroscopy
- We hypothesize that MR spectroscopy is the most accurate method in quantifying hepatic steatosis

Methodology

Figure 3. Microlipid bottle¹

- Development of the MRI Sequence for imaging
 - Thanks to Dr.Puneet Sharma (Emory University)
 - Sequence utilizes In/Out Phase, 2 Point DIXON, 3 Point DIXON and MR Spectroscopy
- Used OsiriX Lite to visualize and interpret MRI images from DIXON and In/Out Phase images
- Used Tarquin and Excel to extract MR spectroscopy data
- Developed a MATLAB program to analyze the phantom lipids based on 4 out of the 6 spectroscopy peaks
 - · Calculates area under curve
- Imaging of various concentrations of lipid phantom controls
 - 0% to 50% lipid phantom controls using Nestle Microlipid (50%)
 - Acquired MR data five times for each lipid phantom
 - · Testing the algorithm against controls

1. MICROLIPID®. (n.d.). Retrieved April 24, 2016, from https://www.nestlehealthscience.us/brands/microlipid/microlipid

Figure 4. Phantom Lipid in 1.5T Siemens

Methodology-TARGUIN GUI

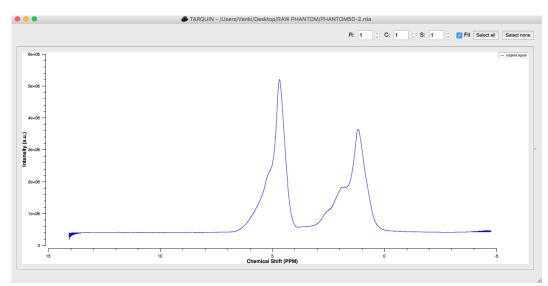


Figure 5. Targuin GUI to visualize 1D MRS spectrum of 50% Lipid Fraction Water Peak at 4.7 ppm and major lipid peak at 1.3 ppm

Figure 6. Phantom Lipid in head coil of 1.5T MRI

Results- MR Phantom Data Graphs

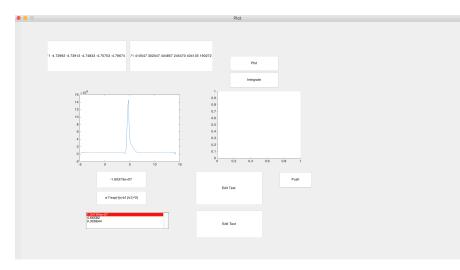


Figure 7. MATLAB Program used to calculate hepatic fat fraction

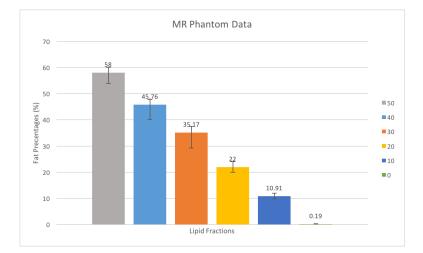


Figure 8. Quantification of lipid fractions using MR Spectroscopy

Findings-Comparing the Different Imaging Techniques

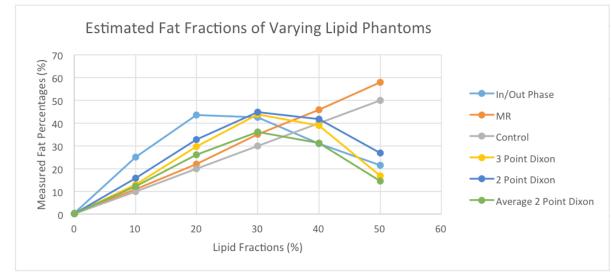


Figure 9. Comparison of various MR imaging techniques

MR Spectroscopy is the most accurate of the various imaging techniques

At fat fractions 30% lipid fractions and greater, MR Spectroscopy found to be most accurate than other tested techniques

Of the tested methods, Average 2 Point DIXON and MR spectroscopy are the most accurate in lipid fraction phantoms below 30%

Conclusions

- MR Spectroscopy is the most accurate of the methods tested in quantifying fat fractions in phantom models
- Future Work
- Use these developed MR spectroscopy technique to determine variability of hepatic fractions in the eight lobes of the liver
- Use these developed MR sequences to quantify the change in hepatic fat in bariatric patients undergoing 2 week pre-operative restrictive diets

Limitations of the Study

- In vivo conditions are different
 - Physiological lipid is heterogeneous in nature and would exhibit varying fat fractions
 - *In vivo* tissue contains other compounds such as iron that is known to alter spectroscopy measurements

