Welcome to the meeting. We will begin shortly.

- Type a comment/question in Q&A (only seen by organizers)
- Type a comment/question in the chat (can be seen by all)
- Questions and comments can be entered in the Q&A field
DIR Training Webinar Series

Dose Index Registry: Maximizing the Value of Participation
Moderator

Zach Smith
Sr. Quality Programs Assistant, ACR
Speakers

A. Kyle Jones, PhD, FAAPM
Professor, University of Texas, MD Anderson Cancer Center
Chair, DIR Education and QI Subcommittee
Chair, DIR Fluoroscopy Subcommittee

William F. Sensakovic, PhD
Chair of Radiology Physics, Mayo Clinic (Arizona)
Chair, DIR Committee
Speakers

Steven Don, MD, FACR
Professor of Radiology and Pediatrics, Mallinckrodt Institute of Radiology
Chair, DIR Digital Radiography Subcommittee

Tinsu Pan, PhD, FAAPM
Professor of Imaging Physics, University of Texas, MD Anderson Cancer Center
Member, DIR Nuclear Medicine Subcommittee

Mike Simanowith
Director of Registries, ACR
Disclosures

• The following faculty member has identified relevant financial relationship(s):
 • Steven Don, MD, FACR – Owner/Founder: Coordinate Medical Systems (relationship has ceased)

• The following faculty member has no relevant financial relationships, but wishes to disclose the following:
 • A. Kyle Jones, Ph.D. – President: FluoroSafety (FluoroSafety will not be discussed during this webinar)
Using the Zoom Interface

Type a comment/question in Q&A (only seen by organizers)

Type a comment/question in the chat (can be seen by all)

Questions and comments can be entered in the Q&A field

© 2021 American College of Radiology® | All rights reserved.
Registry Expansion Awareness – Poll

- Please rate how familiar you are with the DIR expansion to include the following modules:
 - DIR CT (original module)
 - DIR Fluoroscopy (new module open for broad participation)
 - DIR Digital Radiology (pilot phase)
 - DIR Nuclear Medicine (early formation phase)

Very Familiar Somewhat Familiar Not Familiar
Registry Participation – Poll

Please indicate which of the following DIR modules you currently participating in?

• DIR CT
• DIR Fluoroscopy
• DIR Digital Radiography (pilot)
• Our facility is not enrolled in DIR
Introducing the DIR Training Webinar Series

This webinar is first in a series that will continue through 2022:

• Webinar 1: Bring the community up-to-date with recent and future near-term changes
• Webinar 2: It’s all about mapping
• Webinar 3: Practical steps for improvement
Webinar Agenda

• An overview of the DIR expansion
• The value of participation
 • For facilities
 • For the field
• Module updates from the leaders
• Tips for getting the most out of your data
• DIR administrative updates
 • DIR LINK
 • RDSR
 • Calling for NRDR User Group volunteers
• Participation support
DIR History and Achievements

- Started in 2004 collecting just 12,443 CXR and CT from Mayo Clinic (Florida)
 - Dec 2021: 3,265 Facilities 138,441,420 exams
- Significant achievements
 - Diagnostic reference levels
 - National Quality Forum endorsement of DIR measures used in the CMS MIPS program
DIR Value for Participants

- Information . . . and maybe a bit of knowledge
 - Benchmarking and dose monitoring
 - NRDR Reports – PDF and Interactive
- MIPS Measure: Can impact Medicare Part B reimbursement

Data: 15 mGy
Information: Median CTDIvol Ab/Pel is 12 mGy
Knowledge: Our Ab/Pel is higher than national median
Wisdom: How to react
Reports

• Information/knowledge
 • Compare against rest of nation
 • Compare across sites
 • Compare scanners
 • Summary of what is performed
 • Track over time

• Wisdom
 • Protocol optimization
 • Process optimization
 • Troubleshoot
Executive Summary (Static)

Executive Summary Jan thru Mar 2021 - Top 10 Adult - Boxplots

CTDvol

DLP

SSDE

Exam Key
1 = CT ABDOMEN PELVIS KIDNEY WO IVCON
2 = CT ABDOMEN PELVIS W IVCON
3 = CT ABDOMEN PELVIS WO IVCON
4 = CT C SPINE WO IVCON
5 = CT CHEST ABDOMEN PELVIS W IVCON
6 = CT CHEST PULMONARY ARTERIES W IVCON
7 = CT CHEST W IVCON
8 = CT CHEST WO IVCON
9 = CT HEAD BRAIN WO IVCON
10 = CT NECK W IVCON

* Extreme outliers were excluded for this exam for optimal presentation.
Boxplot by Scanner (Interactive)

Boxplot by Scanner for CTDivol Max across Scans
Facility: All
RPID: CT HEAD BRN WO IVCON (RPID266)

<table>
<thead>
<tr>
<th>Facility Exam Count</th>
<th>Registry Statistics 2017 Q3 - Q4</th>
<th>Scanner Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Group</td>
<td>N (Facility)</td>
<td>DIR Median</td>
</tr>
<tr>
<td>Adult (Over 18)</td>
<td>3,966</td>
<td>1,194,899</td>
</tr>
<tr>
<td>0 - 2y</td>
<td>24</td>
<td>11,583</td>
</tr>
<tr>
<td>3 - 6y</td>
<td>19</td>
<td>6,832</td>
</tr>
<tr>
<td>7 - 10y</td>
<td>38</td>
<td>7,310</td>
</tr>
<tr>
<td>11-14y</td>
<td>26</td>
<td>12,299</td>
</tr>
<tr>
<td>15 - 18y</td>
<td>69</td>
<td>26,709</td>
</tr>
<tr>
<td>Grand Total</td>
<td>4,116</td>
<td>1,259,632</td>
</tr>
</tbody>
</table>

Click on the legend to highlight marks for that File Type.

Transmission of secondary captures without a Radiation Dose Structured Report (RDSR) may not produce consistent and correct registry data. Therefore, the ACR "strongly recommends" the exclusive use of RDSRs for DIR data submission.

File Type:
- Radiation Dose (RDSR)
- Secondary Capture

Click on the legend to highlight marks for that File Type.
DIR Value for the Field

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations</td>
<td>2021</td>
</tr>
<tr>
<td>Radiation Dose Reduction in Kidney Stone CT: A Randomized, Facility-Based Intervention</td>
<td>2021</td>
</tr>
<tr>
<td>Radiation Dose for Pediatric CT: Comparison of Pediatric versus Adult Imaging Facilities</td>
<td>2019</td>
</tr>
</tbody>
</table>

2019
DIR Value for the Field Cont.

- 561 Publications
- 7k Citations
- 11.73 Cit./Pub.
Table: Pediatric Exams for Leapfrog Survey

Time Period: 2019: Jan. - Dec.

Corporate Account: [Redacted]

Facilities: [Redacted]

Scanners: All

<table>
<thead>
<tr>
<th></th>
<th>Total Normalized Dose Length Product (mGy*cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Exams</td>
</tr>
<tr>
<td>ABDOMEN PELVIS</td>
<td></td>
</tr>
<tr>
<td>All Pediatric 0-17 Years</td>
<td></td>
</tr>
<tr>
<td>< 1 Year</td>
<td>26</td>
</tr>
<tr>
<td>1-4 Years</td>
<td>87</td>
</tr>
<tr>
<td>5-9 Years</td>
<td>134</td>
</tr>
<tr>
<td>10-14 Years</td>
<td>155</td>
</tr>
<tr>
<td>15-17 Years</td>
<td>145</td>
</tr>
<tr>
<td>Total</td>
<td>547</td>
</tr>
<tr>
<td>18 Years Total</td>
<td>39</td>
</tr>
<tr>
<td>All Pediatric 0-18 Years</td>
<td>586</td>
</tr>
</tbody>
</table>
Recent Achievements

- Tableau Interactivity
- Quality Metric
- Peds DRL
- ACR AC and NCRP
• > 1.5 million exams from > 1,600 facilities
• Survey of current practice (57% of exams from community hospitals, 13% academic, & 26% from children’s hospital)
• DRL comparable to DRL published in other countries
• Age-based and size-based categorization

U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations

Kalpana M. Kanal, PhD • Priscilla F. Butler, MS • Mythreyi B. Chatfield, PhD • Jered Wells, PhD • Ehsan Sanei, PhD • Michael Smanowith, MD • Dan Golden, BA • Dustin A. Gress, MS • Judy Burleson, MHSA • William F. Senskus, PhD • Keith J. Strauss, MSc • Donald Frush, MD

Background: Diagnostic reference levels (DRLs) and achievable doses (ADs) were developed for the 10 most commonly performed pediatric CT examinations in the United States using the American College of Radiology Dose Index Registry.

Purpose: To develop robust, current, national DRLs and ADs for the 10 most commonly performed pediatric CT examinations as a function of patient age and size.
U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations

<table>
<thead>
<tr>
<th>Examination Type and Effective Diameter (cm)</th>
<th>No. of Examinations*</th>
<th>CTDI_{vol} (mGy)</th>
<th>SSDE (mGy)</th>
<th>DLP (mGy cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AD</td>
<td>DRL</td>
<td>AD</td>
</tr>
<tr>
<td>Chest without contrast material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 to <16</td>
<td>1471</td>
<td>1.7</td>
<td>1.9</td>
<td>3.7</td>
</tr>
<tr>
<td>16 to <20</td>
<td>1875</td>
<td>1.9</td>
<td>2.5</td>
<td>3.7</td>
</tr>
<tr>
<td>20 to <24</td>
<td>2572</td>
<td>2.5</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>24 to <28</td>
<td>3556</td>
<td>3.5</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>28 to <32</td>
<td>1894</td>
<td>4.5</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>32 to <36</td>
<td>390</td>
<td>5.7</td>
<td>7.4</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Head without contrast material</td>
<td>Age (y) DRL</td>
</tr>
<tr>
<td>CTDI_{vol} (mGy)</td>
<td>0 to 23</td>
<td>0–4</td>
<td>30</td>
<td><1</td>
<td>22</td>
<td>0–3</td>
<td>37</td>
<td>3 m to 30</td>
</tr>
<tr>
<td>CTDI_{vol} (mGy)</td>
<td>1 to 27</td>
<td>NA</td>
<td>NA</td>
<td>1 to 30</td>
<td>NA</td>
<td>1 to 35</td>
<td>1 to 40</td>
<td>1 to 50</td>
</tr>
<tr>
<td>CTDI_{vol} (mGy)</td>
<td>2 to 31</td>
<td>NA</td>
<td>NA</td>
<td>5 to 40</td>
<td>NA</td>
<td>5 to 50</td>
<td>5 to 55</td>
<td>5 to 55</td>
</tr>
<tr>
<td>CTDI_{vol} (mGy)</td>
<td>6–18</td>
<td>55</td>
<td>5–14</td>
<td>35</td>
<td>10 to 45</td>
<td>7–13</td>
<td>57</td>
<td>10 to 55</td>
</tr>
</tbody>
</table>
Expand Use of DIR Data (Internal and Beyond)
Rationale and Goals for DIR Expansion

• Provide information and knowledge in other modalities
 • Insight into dose trends
 • Practice impact of new technological advances
 • Optimization, troubleshooting, and practice characterization
 • Compare performance with peers across a number of variables: practice setting and type, geographic location
DIR-CT Module Future

- TRIAD Replacement
- RDSR Only
- Adult DRL Update
- Pregnancy status (0010, 21c0)
DIR Fluoroscopy Module Update

• Recent Highlights
 • Open for participation
 • Interactive reports available for IR procedures
 • No extra charge if already participating in DIR-CT
 • Derived indices
 • Device profiles
 • Tracking of cases exceeding SRDL in NRDR portal
DIR-Fluoro Pilot

• Collected data from 50 fluoroscopes at 9 pilot sites March 2018 through December 2019

• Data analysis is complete and reports are being finalized
The Pilot team put together a fantastic participation guide

Useful for all DIR registries
DIR-Fluoro – Device Profile

<table>
<thead>
<tr>
<th>Facility</th>
<th>Station Name</th>
<th>Manufacturer</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>100504</td>
<td>IR11_XA</td>
<td>Siemens</td>
<td>AXIOM-Artis</td>
</tr>
<tr>
<td>Status</td>
<td>Year of Manufacture</td>
<td>Fluoroscope Type</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of dose reference point</td>
<td>Single point dose index correction factor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Substantial radiation dose level (mGy)
DIR-Fluoro – SRDL Event Tracker

<table>
<thead>
<tr>
<th>Date of Exam</th>
<th>Station Name</th>
<th>Procedure Name</th>
<th>ACR Common ID</th>
<th>Ka_r (mGy)</th>
<th>Follow-up</th>
<th>Follow-up Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/2021</td>
<td>IR10_XA</td>
<td>IR EMBOLIZATION VISCERAL 150</td>
<td></td>
<td>6081.5</td>
<td></td>
<td>Active</td>
</tr>
<tr>
<td>06/10/2021</td>
<td>IR12_XA</td>
<td>IR EMBOLIZATION VISCERAL 150</td>
<td></td>
<td>5617.2</td>
<td></td>
<td>Time Lapsed</td>
</tr>
<tr>
<td>05/05/2021</td>
<td>IR12_XA</td>
<td>IR EMBOLIZATION VISCERAL 150</td>
<td></td>
<td>6724.1</td>
<td></td>
<td>Time Lapsed</td>
</tr>
<tr>
<td>04/09/2021</td>
<td>IR19_XA</td>
<td>IR CT GUIDED BIOPSY LYMPH NODE 60</td>
<td></td>
<td>5197.5</td>
<td></td>
<td>Time Lapsed</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam ID</td>
<td>100504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Exam</td>
<td>06/10/2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure Name</td>
<td>IR EMBOLIZATION VISCERAL 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACR Common ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Age</td>
<td>065Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoro Time</td>
<td>47.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Gender</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka_r (mGy)</td>
<td>5617.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka_r "Rate"</td>
<td>117.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Follow-up Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Size</td>
<td>104.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Skin Reaction Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Severe Reaction Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Severe Skin Reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up Status</td>
<td>Time Lapsed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dose Indices for ACR Common: 4011338: INV-FLUOR, percutaneous biliary drainage placement, abdomen, liver

- Avg. Reference Air Kerma Rate (mGy/min)
- Avg. Field Size at Ref. Point
- % Ka,r Delivered with Filter in Place
- % Fluoro Ka,r (Fluoro Ka,r/Total Ka,r)
- % Acquisition Events w/Filter
- % Events w/Added Filtration
DIR-Fluoro – Mapping to ACR Common

• Mapping is the secret sauce of the DIR

• Interventional fluoroscopy presents some unique challenges

• Some exciting developments on the horizon
 • Reorganization of procedure names in Common
 • Application of machine learning to assist with mapping
DIR-Fluoro – Near term plans

• Interventional radiology benchmarking reports

• Diagnostic fluoroscopy pilot in preparation

• Peak skin dose
Digital Radiology Module Update

- Currently in pilot phase
- Pilot Goals
 - Collect dose information across facilities using IEC 62-494 standard
 - Develop feedback reports
 - Determine feasibility to collect technique factors
- Long-term Goals
 - Establish national benchmarks and practice patterns in exposure indices
 - Refine Target Exposure Index for common exams
 - Develop age-based technique chart for common exams
Digital Radiology Module Update Cont.

- NCRP 184 (2016)
 - 74% of all ionizing exams (excluding dental)
 - 275 million exams a year (25 million in children)
 - 0.22 mSv average yearly exposure (2nd to CT 1.37)
Digital Radiology Module Update Cont.

- IEC exposure standard (IEC 62-494)
 - Exposure Index (EI) – relevant area of plate exposure
 - Target Exposure Index (EI_T) – reference exposure
 - Deviation Index (DI) – Logarithmic quantification of how EI varies from EI_T
 - DI = 10 x Log10 (EI/EI_T)
 - DI = 0 spot on
 - -3 DI = 50% underexposure
 - +3 DI = 200% overexposure

Screen-film

Digital

Courtesy Michael Flynn, PhD
Digital Radiology Module Update Cont.

 - E_{T} for DR quite variable
 - Adult Chest 102 – 685 Pediatric Chest 158 – 700
 - Adult Extremity 104 – 1730 Pediatric Extremity 250 – 1258

- Typical DI distribution substantially varied from zero
 - Standard deviation 1.3 – 3.6

- Optimize E_{T}
Digital Radiology Module Update Cont.

• 2019-2020
 • Vendors offered free testing of their radiation dose structured report (RDSR)
 • 7 vendors are compliant with most their recent equipment
 • Typically newer DR
• 2021 Launch of Working Group
 • 11 facilities participating
 • 7 Academic Centers
 • 2 Children’s Hospitals
 • 2 Community Centers
DIR-DR Working Group Issues

- RDSR
 - RDSR access may require add-on purchase
 - May be part of a package for QA or upgrade
 - Access for CT and fluoroscopy included in purchase
 - Alternatives - capture DICOM header from the image
- EI Sensitivity Calibration
 - States do not necessarily require that DR units are calibrated routinely
 - 4 centers evaluating issue
 - May be rare unit falls out of calibration
• Centers may use different terminology for same exam

• ACR Common ID
 • Map exams to same terminology
 • Combine with fluoroscopy
 • Considering separating out from fluoroscopy

• Revise ACR Common ID
 • No ACR Common ID for some examinations such as clavicles, shoulder
 • Combine codes
 • Do we need laterality (right/left)?
DIR-DR Report Generation headed by Xiang Li, PhD DABR

• What are the key metrics to report?
 • At a minimum EI, EIₜ, and DI
 • Further granularity including kVp, mAs, KAP

• Reports
 • DR Standardized Dose Index Reports for each facility
 • Executive Summary of the common exams

• Plan to develop preliminary report by June 2022
Participate in the Digital Radiology Pilot

• Facility recruitment is in progress

• If interested in participating in the pilot study, please contact steven.don@wustl.edu
DIR Nuclear Medicine Module Update

- Recent Highlights
 - Committee formed
- Future Plans
 - Building out ACR Common lexicon for mapping NM exams
 - Submission of NM RDSRs
Getting the Most Out of Your Data: Tips from the Top

• Maximize information content of your image metadata
 • Populating Patient Size [aka Height] (0010, 1020) and Weight (0010, 1030) in DICOM header (info in CT RDSR of PET/CT)
 • Date of birth (0010, 0030) and Age (0010, 1010)
 • Pregnancy status (0010, 21c0)
 • Model Name (0008, 1090) for computation of effective dose [DIR-CT]
• Obtaining data is a team effort involving:
 • RIS vendor
 • Modality vendor
• Can use Exam Detail report to explore this information
 • Coming soon for DIR-Fluoro
CT Facility Summary (Interactive)
DIR Updates

• DIR Link
 • New means of transmitting data from site to ACR (replacing TRIAD)
 • Automatic software updates
 • Enhanced security protocols and local ID management
 • Future data linking projects
 • Pilot in Q2 2022 – phased roll-out 2022/23

• Accepting RDSR only
 • New sites (4/2021) • MIPS (2022) • All Sites (2022/23)

• NRDR User Focus Group
 • Provide feedback/modifications to reports and online tools, review measures under
development, suggest enhancements to improve usability
 • Participation in quarterly meetings and periodic surveys
 • To sign up for the focus group, please submit contact information here or use QR code
 https://app.smartsheet.com/b/form/36f1052c4e0b42edbb22740e05bb1719
NRDR Support

• Access detailed information
 • Pertaining to all registries
 • Registry specific

• Submit a ticket for customer service support

nrdrsupport.acr.org

acr.org/DIR
Example: Placing a Ticket
NRDR Support

Example:
Knowledge Base Search

Dose Index Registry (DIR) Start up Guide

Thank you for your interest in joining the Dose Index Registry (DIR)! This step-by-step start-up guide is intended to help you to get underway with submitting your data and obtaining helpful feedback information.

The DIR is expanding beyond CT to include the additional modalities of fluoroscopy, digital radiography, and nuclear medicine. This guide covers participation in both DIR Computed Tomography (CT), in operation since 2011, and the recently introduced DIR Fluoroscopy (Fluoro) module. The following steps pertain to getting underway with either module and include links to articles in the National Radiology Data Registry (NRDR) Knowledge Base and the NRDR user guide.
Knowledge Base New Look and Feel

• The NRDR Knowledge Base will sport a new interface making it easier to navigate through articles, access support and track ticket status, and log into the NRDR Portal.

• Look for more information and the new look next week.
Registry Start-up Guide

- This guide includes step-by-step instructions for preparing for and beginning participation with the DIR and includes links to articles in the NRDR Knowledge Base.
Opportunities for Engagement

• Join the DIR and expansions

• Future webinars
 • Stay tuned for more webinars in the DIR Training Series later this year
 • Procedure/Exam Mapping and Managing Device Profiles
 • Deep Dive into Performance Reports and Quality Improvement
NRDR Help Desk

- Email: NRDRSupport@acr.org
- Phone: 1-800-227-5463 x3535
- Web: https://nrdrsupport.acr.org
CE Credit Claiming

CE Credit claiming instructions will be sent to you via email from alacount@acr.org following the activity, by February 4, 2022. Please click on the link and follow the instructions in the email to claim your credit, complete the activity evaluation, and receive your certificate. All evaluations and credit claiming requests must be completed no later than 11:59 EDT, April 27, 2022.

For questions regarding the credit claiming of this activity, please contact Alexis LaCount: alacount@acr.org.