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Abstract
Recommendations are a key component of radiology reports. Automatic extraction of recommendations would facilitate 
tasks such as recommendation tracking, quality improvement, and large-scale descriptive studies. Existing report-parsing 
systems are frequently limited to recommendations for follow-up imaging studies, operate at the sentence or document level 
rather than the individual recommendation level, and do not extract important contextualizing information. We present a 
neural network architecture capable of extracting fully contextualized recommendations from any type of radiology report. 
We identified six major “questions” necessary to capture the majority of context associated with a recommendation: recom-
mendation, time period, reason, conditionality, strength, and negation. We developed a unified task representation by allow-
ing questions to refer to answers to other questions. Our representation allows for a single system to perform named entity 
recognition (NER) and classification tasks. We annotated 2272 radiology reports from all specialties, imaging modalities, and 
multiple hospitals across our institution. We evaluated the performance of a long short-term memory (LSTM) architecture on 
the six-question task. The single-task LSTM model achieves a token-level performance of 89.2% at recommendation extrac-
tion, and token-level performances between 85 and 95% F1 on extracting modifying features. Our model extracts all types 
of recommendations, including follow-up imaging, tissue biopsies, and clinical correlation, and can operate in real time. It 
is feasible to extract complete contextualized recommendations of all types from arbitrary radiology reports. The approach 
is likely generalizable to other clinical entities referenced in radiology reports, such as radiologic findings or diagnoses.
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Introduction

One of the most important functions of a radiology report 
is to convey recommendations to the ordering clinician. 
These recommendations include a wide variety of follow-up 
tasks (imaging, tissue sampling, physical exam, lab tests, 
subspecialty consultation) and are prevalent in reports; 
however, previous work has shown low adherence to 
follow-up recommendations [1]. Centralized systems for 
identifying and tracking follow-up recommendations aim 
to increase adherence   [2] and are often implemented 
using structured codes or macros within reports. However, 
simple structured buckets and ontologies do not have 
the expressive power of natural language and may fail to 

capture the linguistic or logical complexities of follow-up 
recommendations (e.g., recommendation strength, chains of 
conditional recommendations, negations); for this reason, 
recommendation free-text is almost always included even 
alongside structured coding systems.

Another approach to improving radiologists’ 
documentation efficiency is to build automated 
information extraction systems which extract and structure 
recommendations and their properties from free text. 
Previous work has shown the feasibility of complete 
information extraction from radiology reports, including 
extraction of relations and “modifier” entity properties (e.g., 
size of a finding, time for a recommendation) with small 
corpora of annotated reports[3]. There is a large body of 
previous work focusing on recommendation extraction in 
particular, with many methodologies and task definitions 
[1, 4–8]. Almost all work performs binary classification at 
the document or sentence level (e.g., does the document—
or sentence—contain at least one recommendation?); 
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however, many reports and even sentences contain multiple 
recommendations, and an ideal tracking system would 
identify and track each recommendation individually. 
Furthermore, most extant systems focus only on follow-up 
imaging recommendations, neglecting other types of 
clinically useful recommendations. The majority rely 
on multi-step pipelines involving hand-coded rules or 
heuristics; although some incorporate machine learning 
techniques, it is usually as a part of a longer pipeline [8].

Ideal tracking systems will extract and display all 
of the contextual information needed to understand the 
recommendation, including timing, recommendation 
strength, conditions under which the recommendation 
should be performed, reasons for the recommendation, 
and associated radiologic findings which can be linked to 
the recommendation and tracked over time. While many 
systems extract a subset of these pieces of information, to 
the authors’ knowledge, none extract all of it. In this study, 
we present an end-to-end deep learning architecture for 
complete, fully contextualized recommendation extraction 
of all types of clinical recommendations found in radiology 
reports.

Materials and Methods

Dataset

Our study was retrospective, performed with data collected 
for routine clinical care, and was approved by our 
institution’s IRB. Our dataset was composed of a random 
sample of 2272 reports from our institution’s entire report 
database, including adult patients of all ages and genders. 
Our reports were drawn from all subspecialties of radiology, 
including interventional radiology, from multiple hospitals 
within a single academic institution, and included a variety 
of report templates, including completely free-text.

Task Definition

Similar to prior work on generalized information extraction, 
we opted to conceive of the recommendation task as a set 

of hierarchical “questions” to be answered [3] which are 
sufficient to provide a fully contextualized recommendation 
to the clinician end user, or serve as an engine for automated 
descriptive analyses. The top-level question is “What are 
all of the recommendations in this document?” For each 
answer to this question (i.e., for each recommendation), 
there exist downstream questions, e.g., “when should this 
recommendation be done?” or “what is the strength of this 
recommendation?,” which refer back to the recommendation 
in question.

Each question can also be framed as one of two types. 
The first question type represents a named entity recognition 
(NER) task, in which each token in the document must be 
labeled as part of an answer to the question or not, and the 
output is a set of contiguous text spans from the document 
corresponding to the answers to the question. The second 
question type represents a classification task, in which the 
system’s output is a single categorical prediction (e.g., is this 
recommendation “strong” or “weak”). In the latter question 
type, evidence from the text is still helpful in interpreting 
the machine’s prediction (e.g., the system can point to 
the word “consider” in “consider follow-up imaging” as 
evidence for a weak recommendation rather than a strong 
one); precedent for this exists in the literature [9, 10]. Note 
that the named entity recognition task is strictly harder 
than the document or sentence classification tasks used for 
recommendation extraction in previous work, as it extracts 
the exact text span corresponding to the recommendation 
or modifying property, rather than merely the sentence or 
document containing it. Furthermore, there may be multiple 
acceptable boundaries for the beginning or end of an answer 
(e.g., a recommendation or reason); the exact boundaries are 
inherently somewhat subjective.

A list of six questions was developed through iterative 
examination of recommendations within reports. After 
viewing approximately 250 reports with recommendations, 
we were satisfied that we had captured the majority of 
relevant contextual factors and modifiers. These properties 
are listed in Table 1.

For this study, we opted not to perform coreference 
resolution (CR) [11], i.e., linking multiple mentions of the 
same recommendation within a document. Coreference is 

Table 1  List of questions answered by our system

Information subtask Referents Type

1. What are all of the recommendations in this report? None Named entity recognition
2. What is the desired time period(s) for this recommendation? Recommendation Named entity recognition
3. What are the stated reasons for this recommendation? Recommendation Named entity recognition
4. Under what conditions should this recommendation be performed? Recommendation Named entity recognition
5. What is the strength of this recommendation? Recommendation Classification (“strong” or “weak”)
6. Is the recommendation explicitly negated? Recommendation Classification (“yes” or “no”)
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a common phenomenon in radiology reports; frequently, 
a radiologist will list a recommendation after stating an 
identified finding within the main body of the report, and 
state it again (often with different wording) in the report 
impression or conclusion. Furthermore, when a trainee’s 
report is read by an attending physician supervisor, the 
same recommendation may be stated multiple times. 
Although automated resolution of coreferences is useful for 
a downstream clinical user (to reduce duplicated information 
and aggregate information between mentions of the same 
entity), it represents a difficult NLP problem which often 
requires large datasets to address appropriately. For further 
details on specific questions and their annotation, see 
Appendix 1.

Annotation

Documents were tokenized using the spaCy Python package. 
We annotated the 2272 reports at the token level using a custom-
built labeling application. For each question, annotations 
consisted of a set of contiguous text spans from the document 
(starting token and ending token). For classification questions, 
the annotation also included the target output class (e.g., strong 
recommendation vs. weak recommendation). Each text-span 
answer to the top-level question (i.e., each recommendation) 
required annotations to be made for each of the downstream 
modifier questions. Further details and screenshots of the 
labeling application are given in Appendix 2.

Models

We aimed to build a unified task representation allowing 
for a single model architecture to answer all of the above 
questions. To do this, we designed the neural network 
models to take three distinct inputs: (1) the radiology 
report itself, in the form of continuous word vectors; (2) 
a single integer representing the question being asked; and 
(3) a vector representing which tokens in the document 
are being asked about (i.e., a vector of referents). For 
instance, in the question “What is the time period for this 
recommendation,” which refers back to the recommendation 
“follow-up chest x-ray,” the referent vector would consist 
of all zeros, except for the tokens “follow-up chest x-ray,” 
which would be represented by ones. The question index 
would be “2” as shown in Table 1. The network contains 
additional embedding layers for both the question index 
and the referent vector, enabling it to learn how to use this 
additional contextual information to provide the answer 
to the question. To extend this architecture to additional 
questions, or questions with multiple referents, one would 
simply add additional question and referent indices.

The model produces two outputs—a NER output 
corresponding to the label of each word token, and a 

classification output corresponding to the categorical answer to 
the question (e.g., “weak” vs. “strong”). For questions which do 
not have categorical answers and only have NER components, 
the network’s classification output is disregarded. For questions 
with categorical answers, the total network loss is obtained by 
summing the loss from the token-level prediction (averaged 
over all tokens) and the classification prediction.

We evaluated a simple long short-term memory (LSTM) 
architecture [12] on the task. We used a combination of 
custom-trained fastText vectors, trained on our institution’s 
entire repository of radiology reports, with Global Vectors 
[13] trained on the Common Crawl dataset.

We compared an LSTM model with a single set of 
weights for all questions (i.e., a multi-task learning 
paradigm) vs. an LSTM model with different weights for 
each question (where each sub-network independently learns 
to solve a single question). Details of the full model are 
described in Appendix 3.

Training and Validation

For each question, the dataset was split into training, 
validation, and test sets with an 80%/10%/10% split of 
question instances. Models were trained using an Adam 
optimizer with a learning rate of 1e−4 until validation loss 
stopped decreasing, with a patience of two epochs. All 
models were trained on a machine with a single GPU, in 
less than 2 hours.

To provide a more complete picture of model 
performance, the recall, precision, and F1 score (the 
harmonic mean of precision and recall) are calculated using 
three different criteria, following the convention of 2013 
SemEval Task 9 [14]. These are as follows: (1) token-level 
metrics (e.g., at the level of the prediction for each word 
token); (2) entity-level exact match, a strict condition where 
only perfect matches between predicted and gold standard 
text spans are counted as true positives; and (3) partial 
match, a more generous condition which counts partial text 
span matches (e.g., a prediction of “MRI” when the gold-
standard annotation is “MRI examination”) as true positives. 
For each metric, confidence intervals for precision and 
recall are calculated using the Wilson score for binomial 
proportions.

Results

Dataset

Table 2 shows a breakdown of the named entity recognition 
annotations. Question 1 is asked once of each report 
document, whereas questions 2–6 are asked of each 
recommendation (i.e., each answer to question 1). The 
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“number of text span answers” column represents the 
number of contiguous text spans which serve as an 
answer to that question (for instance, if a report has two 
recommendations in it, then that adds 2 to the overall 
total for question 1). The “number of unique text span 
answers” is designed to capture the variability of the ways 
in which recommendations are talked about; for instance, 
there are very few unique ways in our corpus to negate a 
recommendation, but a huge variety of unique text spans 
corresponding to “reasons” for recommendations, with 
multiple answers per recommendation.

Our dataset contained 1820 recommendations in total, 
with 899 unique recommendations. The five most common 
recommendations were “screening mammogram” (89), 
“further evaluation” (57), “clinical correlation” (55), “normal 
interval follow-up” (55), and “MRI” (32). There were a large 
variety of unique recommendations in our dataset, suggesting 
that simple rule- or ontology-based algorithms for extracting 
them would be insufficient for capturing the full variety. 
Many reports which contain at least one recommendation 
contain more than one recommendation (e.g., a mammogram 
which gives a separate recommendation for each breast, or 
a restatement of the same recommendation by an attending 
physician and a resident).

Some modifier questions, such as negation, had very 
stereotyped patterns of answers (“no,” “do not,” “does 

not meet criteria”), while others, such as “reason for 
recommendation,” were significantly more varied in 
representation.

For questions 5 and 6, which have categorical answer sets, 
the breakdown was as follows. A total of 108 recommendations 
were negated, while 1712 were positive recommendation 
statements. Exactly 1295 recommendations were denoted as 
“strong,” while 565 were denoted as “weak” recommendations.

We also examined the types of recommendations made 
across the corpus. The majority of recommendations fell 
into one of the following seven categories: correlation 
with clinical history or physical exam, subsequent imaging 
study, comparison to existing imaging study, laboratory 
measurement, other diagnostic study (including tissue 
sampling, colonoscopy), consultation of a specific clinical 
service, and treatment/therapeutic action (e.g., “incision 
and drainage,” “diuresis”). We added an eighth category 
for vague recommendations which did not specify a 
particular action (e.g. “Continued follow-up,” “appropriate 
management”). Total counts of each recommendation type 
are given in Table 3.

Differences Across Modalities and Specialties

Our corpus consisted of 1,124 x-ray studies, 449 CT 
studies, 245 MR studies, 357 ultrasound studies, and 88 

Table 2  Summary statistics

Question Number of question 
instances

Number of answers No. of 
unique 
answers

1. What are all of the recommendations in this report? 2,272 1820 899
2. What is the desired time period(s) for this recommendation? 1,820 796 224
3. What are the stated reasons for this recommendation? 1,820 2948 1467
4. Under what conditions should this recommendation be performed? 1,820 428 196
5. What is the strength of this recommendation? 1,820 1612 207
6. Is the recommendation explicitly negated? 1,820 108 10

Table 3  Breakdown of 
recommendations and reports 
by study type

X-ray CT MR Ultrasound Other

Total studies 1124 449 245 357 97
Total recommendations 621 563 197 381 58
# Recommendations: Correlate with History/Exam 71 70 29 31 4
# Recommendations: Additional Imaging Study 485 391 115 257 35
# Recommendations: Compare with Existing Imaging 21 12 6 5 5
# Recommendations: Laboratory Test 1 9 1 20 0
# Recommendations: Other Diagnostic Study 13 34 10 44 5
# Recommendations: Consultation 4 5 4 4 1
# Recommendations: Therapeutic Action 13 4 0 7 4
# Recommendations: Vague 13 38 32 13 4
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“other” studies (including nuclear medicine and other 
miscellaneous studies). In total, the X-ray reports contained 
621 recommendations (of any type, not just follow-up 
imaging), the CT reports contained 563 recommendations, 
the MR studies contained 197, the ultrasounds contained 
381, and the “other” studies contained 58 recommendations. 
Table 3 shows a detailed breakdown of recommendation 
types by study type.

Model Performance

Named Entity Recognition

Performance of the single-task and multi-task paradigm 
LSTM models on named entity recognition is given below, 
in Table 4. The single-task model is able to achieve good 
performance on the majority of tasks, including relatively 
complex tasks such as “reasons for recommendation.” 
Perhaps unsurprisingly, tasks with longer text spans and 
more subjective “beginning” and “end” boundaries (e.g., 
question 3) are more difficult for the network within the 
“exact match” metrics. In particular, answers to question 3 

often take the form of multiple sentences describing a single 
finding which motivated a recommendation. The multi-task 
model tends not to perform as well as the single-task model 
on the majority of tasks.

Classification

Table 5 demonstrates the LSTM model’s performance 
on questions which include categorical classification of 
a recommendation. On our test dataset, the models were 
able to achieve near-perfect performance at these tasks.

Real‑Time Application

Our system can be used in real-time to extract 
contextualized recommendations from free text. First, we 
“ask” the model to answer the top-level recommendation 
extraction question by passing as arguments the index of 
the top-level question, and a referent vector consisting of 
all zeros, along with the report text. For each “answer” 
text span predicted by the model, we create a new set 

Table 4  Model performance on each question

Question Performance (single-task 
model, exact match)

Performance (single-task 
model, partial match)

Performance (single-task 
model, token-level)

Performance (multi-task 
model, token-level)

1. What are all of the 
recommendations in this 
report?

Recall: 70.7% (63.7–
77.6)%

Precision: 69.0% (62.0–
76.0)%

F1: 69.9%

Recall: 91.0% (86.4–
95.6)%

Precision: 88.9% (84.0–
93.8)%

F1: 89.9%

Recall: 87.1% (84.5–
89.7)%

Precision: 91.3% (89.0–
93.6)%

F1: 89.2%

Recall: 85.8% (83.1–88.3%)
Precision: 73.2% (70.2–

76.2%)
F1: 79.0%

2. What is the desired time 
period(s) for this recom-
mendation?

Recall: 83.3% (75.4–
91.2)%

Precision: 77.3% (68.9–
85.8)%

F1: 80.2%

Recall: 91.1% (84.7–
97.5)%

Precision: 84.5% (77.0–
92.0)%

F1: 87.7%

Recall: 84.5% (80.3–
88.6)%

Precision: 88.8% (85.0–
92.5)%

F1: 86.6%

Recall: 82.6% (77.7–87.4)%
Precision: 82.6% (77.7–

87.4)%
F1: 82.6%

3. What are the stated 
reasons for this recom-
mendation?

Recall: 43.8% (38.1–
49.5)%

Precision: 44.0 (38.3–
49.7)%

F1: 43.9%

Recall: 88.4% (84.5–
92.1)%

Precision: 88.7% (84.9–
92.4)%

F1: 88.5%

Recall: 90.0% (88.9–
90.9)%

Precision: 82.9% (81.6–
84.1)%

F1: 86.3%

Recall: 70.2% (68.8–71.6)%
Precision: 83.4% (82.2–

84.7)%
F1: 76.3%

4. Under what conditions 
should this recommenda-
tion be performed?

Recall: 82.2% (70.4–
94.0)%

Precision: 77.1% (64–8-
89.3)%

F1: 79.6%

Recall: 88.9% (78.7–
99.1%)

Precision: 83.3% (72.2–
94.5)%

F1: 86.0%

Recall: 90.4% (86.5–
94.2)%

Precision: 90.8% (87.0–
94.6)%

F1: 90.5%

Recall: 93.3% (90.5–96.2)%
Precision: 91.0% (87.8–

94.2)%
F1: 92.2%

5. What is the strength of 
this recommendation? 
(textual evidence)

Recall: 87.5% (57.5–100)%
Precision: 77.8% (47.6–

100)%
F1: 82.3%

Recall: 100% (74.2–100)%
Precision: 88.9% 

(61.3–100)%
F1: 94.1%

Recall: 90.9% (67.3–
100%)

Precision: 90.9% 
(67.3–100)%

F1: 90.9%

Recall: 87.9% (84.4–91.4)%
Precision: 94.1% (91.5–

96.8)%
F1: 90.9%

6. Is the recommenda-
tion explicitly negated? 
(textual evidence)

Recall: 82.2% (76.0–
88.2)%

Precision: 82.7% (76.6–
88.7)%

F1: 82.4%

Recall: 93.6% (89.5–
97.7)%

Precision: 94.2% (90.2–
98.2)%

F1: 93.9%

Recall: 93.6% (90.7–
96.6)%

Precision: 86.3% (82.4–
90.2)%

F1: 89.8%

Recall: 75.0% (64.8–85.2)%
Precision: 100% (95.1–

100%)
F1: 85.7%
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of downstream modifier questions to be answered. The 
system is capable of operating in real time (as a user 
is typing) or in batch mode (for large scale analysis of 
millions of radiology reports).

Discussion

In summary, we define a set of tasks which, together, provide 
complete contextualized free-text recommendation extraction 
from arbitrary radiology reports. We build a dataset consisting 
of 2272 randomly sampled reports including a wide variety 
of patients, report templates, indications, study types, and 
radiologic subdisciplines. Our task extracts the exact text 
corresponding to recommendations and recommendation 
modifiers, which represents an improvement over document-
level or sentence-level classification and extracts all relevant 
associated contextual factors (reason, negation, conditional, 
time period). The extracted information can be used in clinical 
tracking systems, population health applications, and automated 
descriptive studies of large volumes of radiology reports.

Our unifying question-answering framework enables a 
single representation of each of the questions to be passed 
to the neural network, rather than requiring multiple types of 
networks arranged in a pipeline. For downstream “modifier” 
questions, explicit representations of the referent entities 
(in this case, the recommendations) in the form of referent 
vectors were sufficient to teach the network to focus on the 
context surrounding the specific recommendation, even 
though it had access to the full document if necessary. Our 
framework is extensible to arbitrary sets of questions and 
referents, allowing for simple addition of new questions. In 
particular, we plan to build a similar system for extraction 
of radiologic findings and link findings to recommendations 
with similar referent-based questions, enabling a finding-
level summary of a patient’s radiologic history.

The model does not perform as well on the “exact” match 
metric for some questions, notably questions 1 and 3, the 
answers to which often consist of multiple sentences or 
sentence parts and may even have multiple reasonable correct 
answers. The exact match metric imposes an “all or nothing” 
standard on the model, where if it predicts the phrase 
“head MRI” as the answer instead of “repeat head MRI,” 

or “Recommend correlation with physical exam findings” 
instead of “correlation with physical exam findings,” it is 
counted as a 0% for that example. In these cases, the token-
level match metric provides a better indicator of the model’s 
performance, because it is capable of measuring partial or 
near-perfect matches. In the case of questions 1 and 3, the 
token-level metric indicates that the model is identifying the 
majority of tokens involved in the question answer, even for 
these more complex or subjective questions.

We compared the single-task paradigm LSTM to the 
multi-task LSTM to evaluate whether the model would 
benefit from learning each question separately vs. jointly 
learning all questions simultaneously. From this study, 
although the multi-task models were able to learn features 
associated with each question and answer differently 
depending on which question passed to the network, the 
multi-task network does not provide significant performance 
benefits over the single-task paradigm on the majority of 
questions. However, there are a wide variety of paradigms 
and approaches for multi-task deep learning; another 
approach might prove more fruitful [15].

Machine learning algorithms are capable of combing 
through large volumes of data and identifying cases which 
merit close human scrutiny much faster than a human user. 
These strengths complement the strengths of the human 
user, who has fluid general knowledge and the ability to 
handle situations outside of the machine learning system’s 
training distribution. For the foreseeable future, such 
applications will still require human expertise to handle 
out-of-distribution or unexpected cases; however, clinicians’ 
expertise can be put to its best use in combination with 
automated screening systems. Particularly, if the alternative 
to a machine-assisted system is no standardized tracking 
system whatsoever, as is often the case, an imperfect system 
is certainly preferable.

Tools such as this have potential not only for point-of-care 
or population-based abnormality tracking systems but also 
for large-scale automated descriptive studies [16, 17], which 
can provide deep analysis of existing large-scale practice 
patterns and motivate quality and safety interventions. Many 
of these analyses are currently done manually, by having 
human clinicians spend hours reading or skimming thousands 
of documents, but machine learning-based information 

Table 5  Model performance on categorical classification

Question F1 score (classification, single-task model) F1 score (classification, multi-task model)

5. What is the strength of this recom-
mendation? (strong/weak)

Recall (weak): 100% (94.2–100)%
Precision (weak): 93.8% (85.4–100)%
F1 (weak): 96.8%

Recall (weak): 99.2% (96.7–100)%
Precision (weak): 97.7% (94.6–100)%
F1 (weak): 98.5%

6. Is the recommendation explicitly 
negated? (yes/no)

Recall (negated): 100% (74.2–100)%
Precision (negated): 100% (74.2–100)%
F1 (negated): 100%

Recall (negated): 100% (74.2–100)%
Precision (negated): 100% (74.2–100)%
F1 (negated): 100%
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extraction systems have great potential to increase the ease 
of such analyses. A system such as ours, which is capable of 
analyses on the individual recommendation level, rather than 
the sentence or document level, is required for the deepest 
understanding of clinical entities such as recommendations. 
In particular, the inclusion of negations and conditional 
statements is critical for any such study to accurately describe 
the statistics of the document corpus. In future work, we plan 
on conducting large-scale descriptive analyses to examine 
how recommendations vary with imaging modality and 
radiology specialty.

One limitation of our work is that it has only been 
validated on our institution’s reports. Although our dataset 
includes reports from many different radiologists, other 
institutions may have different documentation practices, so 
our models may not generalize perfectly. Another limitation 
is the significant up-front human cost to label the data. 
Finding ways to embed annotation naturally into existing 
radiologist workflow, to create datasets which can ultimately 
be used to produce tools for radiologists themselves, remains 
a useful endeavor. Given the limited amount of common 
“questions” one might ask of a radiology report, creating 
large collaborative cross-institutional annotated datasets 
could reasonably be created for the majority of common use 
cases. Alternatively, federated ML approaches can be used; 
in the federated paradigm, slices of a complete dataset are 
stored in different locations, training is performed locally, 
and model weight updates are pushed from the local sites 
to a central copy of the model [18]. Either approach would 
enable all institutions, including those without significant 
research departments or specific vendor products, to benefit 
from such tools.

Conclusion

We have demonstrated the feasibility of complete, fully 
contextualized recommendation extraction from all types of 
radiology reports, including all types of recommendations 
(e.g., clinical correlation, follow-up imaging, tissue biopsy, 
and others). Such tools may ultimately prove useful in a 
wide variety of clinical, research, and quality improvement 
applications.

Appendix 1. Annotation Protocol for Specific 
Questions

Question 1: What are all of the Recommendations 
in this Report?

To fully capture the diversity of recommendations in 
reports, as well as to enable the maximal variety of future 

descriptive analyses or clinical tracking systems, we defined 
recommendations as broadly as possible. Recommendations 
were defined as any span of text indicating that something 
should or should not be done or considered by the ordering 
clinician. This includes recommendations for imaging 
studies, lab tests, tissue samples, specialty referrals, 
correlation with physical exam findings, comparison with 
prior imaging, and nonspecific statements of “clinical 
correlation.” Statements that “No further follow-up is 
required” are annotated as negated recommendations; i.e., 
“follow-up” is tagged as the text span answer to the top-
level question, and “no” is the classification answer to the 
downstream question “Is this recommendation negated?” 
Statements that “XXX may be considered for better 
visualization” were included as recommendations.

Question 2: What is the Desired Time Period for this 
Recommendation?

Any statement indicating a time period, whether exact, 
relative, or vague, was annotated as a text-span answer 
to this question (e.g., “Screening mammogram in 
12 months,” “short interval follow-up,” “nonemergent 
CT.” “MRI when patient’s clinical condition permits”).

Question 3: What are the Stated Reasons for this 
Recommendation?

Text spans were annotated as answers to Question 3 if 
they provided context for the recommendation regarding 
its purpose, reason, or goal. This includes broad indication 
categories (“screening mammogram,” “follow-up imaging,” 
“surveillance”), specific stated goals for follow-up (“to rule 
out malignancy,” “to ensure resolution of consolidation”), 
rationale or justification statements (“given stability over 
the past 12 months”), and findings which clearly motivated 
the recommendation (“’Indeterminate left adrenal mass may 
represent atypical adenoma and should be characterized. 
Recommend…”). For negated recommendations, reasons 
for not performing the follow-up were annotated. This 
was designed to be used in downstream systems which 
link recommendations to findings over time, with the 
understanding that it is somewhat more difficult than the 
other questions to define exactly.

Question 4: Under What Conditions Should this 
Recommendation be Performed?

Many recommendations include conditions which should 
be met before the recommendation is done (e.g., “if the 
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patient is at increased risk for pulmonary metastatic 
disease,” “if further evaluation of this finding is desired,” 
“if clinically indicated,” “otherwise”). Any such condition 
was tagged as a free-text answer to this question.

Question 5: What is the Strength of this 
Recommendation?

While this can be a category of dispute even among 
radiologists, we opted to use a few simple heuristics for 
annotation. Statements such as “is recommended,” “is 
advised,” or imperative directives (“Follow up in 6 months”) 
were annotated as strong recommendations, whereas those 
which “suggested” asked ordering clinicians to “consider” a 
recommendation or posited that a follow-up study “may be 
useful” were annotated as weak recommendations. Similarly, 
recommendations which merely stated that a follow-up study 
has the potential to better distinguish differential diagnoses 
were annotated as weak recommendations.

Question 6: Is this Recommendation Explicitly 
Negated?

Many recommendations are actually statements not to do 
something, or that nothing is necessary to be done. If a 
recommendation was of this type (e.g., “No further follow-up 
is required,” “Does not meet criteria for follow-up”), the 
recommendation was annotated as negated, and the negation 
phrase (e.g., “no,” “nothing,” “does not”) was tagged as a 
free-text rationale for the classification.

Appendix 2. Custom Labeling Application

Our custom web application for report annotation is 
demonstrated below. During annotation time, it was hosted 
behind our institution’s firewall, accessible only on the 
institution’s internal network. The application was hosted 
using Python’s Flask web server software, with a MongoDB 

database for storing documents and annotations. The front-
end client-side interface was written using Vue.js. The web 
application allowed for the creation of annotation projects, 
each of which has their own set of “questions.” Documents 
were loaded into the application and tokenized using SpaCy. 
The interface enables users to navigate between different 
questions and annotate documents at the token or character-
level. In the case of this project, annotations were performed 
at the token level.

Figure 1 shows the web interface being used to annotate 
a sample anonymized radiology report.

Appendix 3. Neural Network Architectures

Word Vectors

In order to capture the specifics of the relatively limited 
domain of radiologic text while also maintaining the benefits 
of word embeddings trained on a large and diverse English 
corpus, we opted to combine two word embeddings: (1) 
a set of general-purpose English text embeddings from 
spaCy’s “en_core_web_lg” model (trained on the Common 
Crawl dataset as Global Vectors (GloVe)) and (2) custom-
trained fastText vectors on our institution’s entire corpus 
of radiology reports. We used the fastText implementation 
from the gensim python package with the skip-gram training 
procedure, 300-dimensional embeddings, and all other 
parameters set to gensim’s default values.

LSTM Multi‑Task Model

The multi-task LSTM consisted of a document embedding 
layer with an output consisting of 600 dimensions; 300 of 
these came from the default SpaCy vectors (‘en_core_web_
lg’ model), and 300 from our custom-trained fastText vectors. 
In addition, there was a separate referent embedding layer 
which embedded the referent vector in a 300-dimensional 
space. For this study, there was only one type of referent 
(recommendations), so the embedding layer processed vectors 
consisting entirely of zeros (indicating that the token was not 
part of a referent) and ones (indicating the token was part 
of a recommendation referent), although it is generalizable 
to an arbitrary number of referent types. These two word 
embeddings were concatenated to produce the final token 
embedding of size 900. The concatenated embeddings were 
then processed by 2 bidirectional LSTM layers of dimension 
400. The processed text was concatenated, token-wise, with 
the question embedding. The question embedding was a third, 
separate embedding layer which embedded the question type, 

Fig. 1  (a) The custom web interface used to annotate reports. This 
shows a user annotating a top-level question (question 1) for an 
anonymized radiology report. The user uses the left-hand column to 
select the question to annotate answers for and uses the center col-
umn to highlight and tag spans of text as answers to that particular 
question. In this document, there are three separate recommenda-
tions, corresponding to three answers to the “recommendation” ques-
tion. (b) In this screenshot, the user is annotating question 2 (“What 
is the desired time period for this recommendation?”) for each of the 
three previously identified recommendations in this report. The right-
hand column is used to select which follow-up recommendation (i.e. 
which answer to question 1) to annotate. Note that downstream ques-
tions such as question 2 may also have multiple answers, as in this 
case –“CT” should be performed “annually” and “for 5 years.” Both 
of these text spans provide temporal context for the recommendation

◂
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enabling the same network to answer all six different questions. 
A two-layer dense neural network (dimensions: 700 × 350 
followed by 350 × 2), with an intermediate ReLU layer to 
allow for nonlinearity, was then used to process each token to 
produce the final two-dimensional output (part of an answer 
vs. not). For questions with categorical inputs, a maxpool over 
all tokens was applied before a separate 2-layer dense network 
(700 × 350, 350 × 2). The network is shown in Fig. 2a.

LSTM Single‑Task Model

This model is very similar to the multi-task model; the 
only difference is that there is a separate network (with 
unique weights) for each question, which only answers 
that question. The type of question now merely determines 
which sub-network each question is passed to. The network 
is shown in Fig. 2b.
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Fig. 2   (a) Diagram of the multi-task neural network model. Green 
boxes represent model actions; blue boxes represent the state of data 
as it passes through the network. |V|: number of tokens in vocabulary. 
|Q|: number of unique questions to be answered by the network. L: 
length of document. Batch sizes are ignored for ease of comprehen-
sion. (b) Diagram of the single-task neural network model. Green 
boxes represent model actions; blue boxes represent the state of data 
as it passes through the network. In this model, the question type is 
used to select which of the sub-networks handles the question, and 
therefore requires no question embedding required. Each sub-network 
has its own unique weights and is trained only on a single question. 
|V|: number of tokens in vocabulary. |Q|: number of unique questions 
to be answered by the network. L: length of document. Batch sizes 
are ignored for ease of comprehension
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