The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2014 (CSC/BOC)*

ACR–ASTRO PRACTICE PARAMETER FOR THE PERFORMANCE OF STEREOTACTIC BODY RADIATION THERAPY

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiation oncology care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO).

Stereotactic body radiation therapy (SBRT) is an external beam radiation therapy method that very precisely delivers a high dose of radiation to an extracranial target. SBRT is typically a complete course of therapy delivered in 1 to 5 sessions (fractions). Specialized treatment planning results in a high dose of radiation to the target with a much lower dose to the immediate surrounding normal tissues. SBRT is a continuously evolving therapy, including a variety of techniques to address the challenges posed by motion of the target and surrounding organs. Although treatment of intracranial sites may be understood conceptually as a form of SBRT, for the purpose of this document SBRT is strictly defined as radiation therapy delivered via stereotactic guidance with high levels of targeting accuracy to extracranial targets. For information regarding intracranial target treatments, refer to the ACR-ASTRO Practice Parameter for the Performance of Stereotactic Radiosurgery.

The purpose of this practice parameter is to provide guidance to physicians and medical physicists and to define quality criteria in view of the high technical demands of SBRT. Megavoltage photons and protons may be used for SBRT. During irradiation with photons, multiple options are available for the radiation beams. These options include static fields, with or without intensity-modulated radiation therapy (IMRT) techniques, rotational fields, modulated rotational therapy, and multiple robotically directed beams.

SBRT requires stereotactic target localization and improved delivery precision over those required for conventional 3-D treatment delivery. For example, conventional multileaf collimator (MLC) leaf width of 1 cm is inadequate for treating small targets. Higher confidence in targeting accuracy, facilitated by imaging and positioning techniques, is necessary to reduce uncertainties and corresponding target margins. Maneuvers to either limit or compensate for movement of the patient (as in breathing) or of the tumor during treatment planning and delivery are vital components to this technique [1]. Motion assessment techniques include 4-D computed tomography (CT), breath-hold techniques, and fluoroscopy to assess tumor motion during simulation [2]. Likewise, similar maneuvers are used on the treatment machine to compensate for tumor motion. Patient maneuvers on the treatment machine include breath-hold techniques and motion dampening with abdominal compression. Equipment maneuvers include techniques such as beam gating and tumor tracking. All delivery methods must ensure treatment of the entire tumor pathway during inhalation and exhalation using either patient- and/or equipment-based techniques.

SBRT, like conventional radiation therapy, uses target definitions defined within Reports 50 and 62 published by the International Commission on Radiation Units and Measurements [3,4]. Definitions of gross target volume (GTV), clinical target volume (CTV), planning target volume (PTV), and organs at risk (OAR) are employed. The CTV may fluctuate in size and position due to respiratory motion or organ dynamics. This is generally accounted for by adding an internal motion margin to the CTV, resulting in an internal target volume (ITV). As the delineation of an ITV implicitly includes the CTV, under the assumption that microscopic disease extension is incorporated within the region of internal motion, under these circumstances the CTV often is left undefined. Typical margins from ITV to PTV range up to 1 cm.

The use of multiple beams spanning a large angular range is the principle means to achieve a rapid dose fall-off with SBRT. To ensure accurate radiation beam placement, stereotactic localization of the target is accomplished for each treatment with imaging and/or placement of fiducial marker(s). Whether delivery systems have room-mounted or on-board x-ray or computed tomography-based localization, the expected results are similar. For either localization system, visible tumors, fiducial markers, or appropriate anatomic landmarks are used.

Strict protocols for quality assurance (QA) must be followed. SBRT requires levels of precision and accuracy that surpass the requirements of conventionally fractionated radiation therapy or intensity-modulated delivery because of the high radiation doses used per fraction. A variety of task groups and reports are available that provide guidance toward commissioning and quality assurance of SBRT delivery devices [5] as well as imaging and treatment planning...
systems [6]. The SBRT process requires a coordinated team effort between the radiation oncologist, the medical physicist, the medical dosimetrist, and the radiation therapist.

II. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR–ASTRO Practice Parameter for Radiation Oncology [7] for outlined qualifications, credentialing, professional relationships, and treatment practice parameters. The following are minimal recommendations for staffing levels and staff responsibilities while participating in an SBRT procedure. Specific duties may be reassigned where appropriate.

A. Radiation Oncologist

Certification or satisfactory completion of training in radiation oncology should be documented for the radiation oncologist as detailed in the ACR–ASTRO Practice Parameter for Radiation Oncology [7]. If this certification or training did not include SBRT, then specific training or experience in SBRT should be obtained prior to performing any stereotactic procedures.

The responsibilities of the radiation oncologist should be clearly defined and should include the following:

1. The radiation oncologist will manage the overall disease-specific treatment regimen, including careful evaluation of disease stage, assessment of comorbidity and previous treatments, thorough exploration of various treatment options (including multidisciplinary conferences and consultation where appropriate), ample and understandable discussion of treatment impact, including its benefits and potential harms, knowledgeable design and conduct of treatment as outlined below, and prudent follow-up after treatment.

2. The radiation oncologist will determine and recommend proper patient positioning and immobilization method with attention to site-specific targeting concerns, patient-specific positioning, patient comfort for typically long treatment sessions, stability of setup, and accommodation of devices accounting for organ motion.

3. The radiation oncologist will determine and recommend a procedure to account for inherent organ motion for targets that are significantly influenced by such motion. This activity may include execution of a variety of methods, including respiratory gating, tumor tracking, organ motion dampening, or patient-directed methods.

4. The radiation oncologist will be responsible to supervise for supervision of patient simulation using appropriate imaging methods. The radiation oncologist needs to be aware of the spatial accuracy and precision of the imaging modality. Steps must be taken to ensure that all aspects of simulation, including positioning, immobilization, and methods to account for inherent organ motions, are properly incorporated.

5. After the planning images have been acquired, the images will be transferred to the treatment-planning system. The radiation oncologist will contour the outline of the GTV. Generally only visible tumor will be targeted, but in certain circumstances the radiation oncologist will use his/her knowledge of the pattern of microscopic spread and knowledge of normal tissue tolerance to enlarge the GTV to constitute the CTV. In some instances of using tumor motion information obtained at the time of simulation the concept of a “motion-corrected” CTV may be used to create an ITV. Subsequently, with knowledge of the mechanical uncertainty of the treatment apparatus, the extent of setup uncertainty, inherent and residual organ motion, and other patient or system-specific uncertainties, the radiation oncologist will coordinate the design for the proper PTV. In addition to these tumor targets, the radiation oncologist will see that relevant normal tissues should be contoured so that dose volume limits may be considered. Locating and specifying the target volumes and relevant critical normal tissues will be carried out after consideration of all relevant imaging studies.

6. The radiation oncologist will generate a case-specific prescription for the radiation dose to the target volume and for dose/volume limits to normal tissues. Participating in the iterative process of plan development, the radiation oncologist will approve the final treatment plan in collaboration with a medical physicist.

7. The radiation oncologist will attend and direct the actual treatment process. Premedications, sedation, and/or pain medicine may be prescribed as appropriate. Patients will be positioned according to the simulation and treatment plan. Treatment devices used for stereotactic targeting and methods that account for inherent organ motion.
motion will be employed. The conduct of all members of the treatment team will be under the supervision of the radiation oncologist.

B. Qualified Medical Physicist

A Qualified Medical Physicist is an individual who is competent to practice independently one or more of the subfields in medical physics. The American College of Radiology (ACR) considers certification, continuing education, and experience in the appropriate subfield(s) to demonstrate that an individual is competent to practice one or more of the subfields in medical physics, and to be a Qualified Medical Physicist. The ACR strongly recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, or by the American Board of Medical Physics (ABMP).

A Qualified Medical Physicist should meet the ACR Practice Parameter for Continuing Medical Education (CME). (ACR Resolution 17, 1996 – revised in 2012, Resolution 42)

The appropriate subfield of medical physics for this practice parameter is Therapeutic Medical Physics, which. (Including previous medical physics certification categories of Radiological Physics and Therapeutic Radiological Physics.)

In addition, the Qualified Medical Physicist must meet any qualifications imposed by the state and/or local radiation control agency to practice radiation oncology physics and/or to provide oversight of the establishment and conduct of the physics quality management program.

If the above training did not include SBRT, then specific training in SBRT should be obtained prior to performing any stereotactic procedures.

The medical physicist is responsible for the technical aspects of radiosurgery and must be available for consultation throughout the entire procedure: imaging, treatment planning, and dose delivery. Those responsibilities must be clearly defined and should include the following:

1. Acceptance testing and commissioning of the SBRT system, thereby assuring its geometric and dosimetric precision and accuracy. This includes the following:
 a. Localization devices used for accurate determination of target coordinates
 b. The image-based 3-D and/or intensity-modulated treatment planning system
 c. The SBRT external beam delivery unit
2. Implementing and managing a quality control (QC) program for the SBRT system to monitor and assure proper functioning of the following:
 a. The SBRT external beam delivery unit
 b. The image guidance system as well as all other imaging devices used for SBRT
 c. The image-based 3-D and/or intensity-modulated treatment planning system
 d. Verification of proper delivery of planned modulated treatments by way of phantom measurements
3. Establishing a comprehensive QC checklist that acts as a detailed guide to the entire treatment process
4. Directly supervising or checking the treatment planning process
5. Communicating with the radiation oncologist to discuss the optimal patient plan
6. Using the plan approved by the radiation oncologist to determine and check the appropriate beam-delivery practice parameters; this includes the calculation of the radiation beam practice parameters consistent with the beam geometry
7. Ensuring that the beam delivery process on the treatment unit accurately fulfills the prescription of the radiation oncologist
C. Radiation Therapist

A radiation therapist must fulfill state licensing requirements and should have American Registry of Radiologic Technologists (ARRT) certification in radiation therapy. The responsibilities of the radiation therapist should be clearly defined and may include the following:

1. Preparing the treatment room for the SBRT procedure
2. Assisting the treatment team with patient positioning/immobilization
3. Operating the treatment unit after the radiation oncologist and medical physicist have approved the clinical and technical aspects for beam delivery

D. Other Participants

The radiation oncologist, as the primary physician involved in the assessment of patient suitability and supervision of the delivery of SBRT, may choose to obtain consultation from other specialists as necessary.

III. SPECIFICATIONS OF THE PROCEDURE

The accuracy and precision of SBRT treatment planning and delivery are critical. The treatment-delivery unit requires the implementation of, and adherence to, an ongoing QA program [5]. The mechanical tolerance of the radiation delivery apparatus should be appropriate for the clinical task. Additional tolerances to account for setup error and variation of target localization may be applied, and these are detailed in section VI. Precision should be validated by a reliable QA process. It is recognized that various test procedures may be used with equal validity to ascertain that the treatment delivery unit is functioning properly and safely. The test results should be documented, signed by the person doing the testing, and archived.

Substantive maneuvers will be used for treating the planned volume without missing portions of the tumor. In many cases, this will require reproducible immobilization or positioning maneuvers. Efforts need to be made to account for inherent organ motion that might influence target precision. Dose distributions surrounding the target with rapid falloff to normal tissue may be achieved with the use of numerous beams or large arced beams of radiation with carefully controlled aperture(s) as well as with IMRT or VMAT in some cases. Stereotactic targeting and treatment delivery ensure that these beams will conform with the highest precision to their intended destination.

IV. DOCUMENTATION

Reporting should be in accordance with the ACR–ASTRO Practice Parameter for Communication: Radiation Oncology [8].

Documentation of delivered doses to volumes of target and nontarget tissues, in the forms of dose-volume histograms and representative cross-sectional isodose treatment diagrams, should be maintained in the patient’s written or electronic record. Successful SBRT implementation requires specification of treatment unit parameters, patient positioning details, and type and frequency of imaging modalities used. As noted elsewhere in this document, various verification methodologies of SBRT implementation are in current use, and documentation of the methodology used should be incorporated into the patient radiation oncology record.

V. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Relative to conventional radiation therapy treatments, SBRT is a process that requires increased precision in the positioning of the treatment beams due to the large doses of radiation administered for each treatment fraction. Thus, QA of an SBRT system must guarantee that both the image-guided system and the treatment delivery system are functioning within acceptable limits. It is essential that the QA process ensures that these 2 systems communicate such that the information gathered by the imaging system properly directs the selected beams to the position within
the patient determined by the treatment planning process. It is important to understand that it is not acceptable to test the 2 systems separately. The testing must be tied together.

This procedure must be a 2-step process: The first step must be designed to use the image-guided system to position 1 or more test points, eg, fiducials, in space at known coordinates. The second step must work through the treatment planning system for irradiation of these test points with the actual treatment beam, using an appropriate imaging technique that verifies acceptable target localization. Some technologies employ 2 independent imaging systems. For example, the image-guided system might be a cone-beam device mounted on the linear accelerator, while the verification imaging is performed with the megavoltage beam impinging on an electronic portal imaging device (EPID).

Frame-based stereotactic devices include a cranial or head and neck mask or frame with fiducial box, a stereotactic body frame, etc. Frameless stereotactic methods include metallic seed implantation within a tumor; use of surrogate anatomy such as bone, whose position is well established in relation to the target; or use of the target itself as a fiducial.

1. Quality control of images

SBRT is an image-based treatment. All salient anatomical features of the SBRT patient, both normal and abnormal, are defined with CT, MRI, positron emission tomography (PET), or angiography. Image fusion with a planning CT dataset may be useful in defining the target volume(s). Both high 3-D spatial accuracy and tissue contrast definition are important imaging features for using SBRT to its fullest positional accuracy.

The images used in SBRT are critical to the entire process. The quality of patient care and treatment delivery is predicated on the ability to define the target and normal tissue boundaries as well as to generate target coordinates at which the treatment beams are to be aimed. They are used for creating an anatomical patient model (virtual patient) for treatment planning, and they contain the morphology required for the treatment plan evaluation and dose calculation.

General consideration should be given to the following issues:

Target/critical structure definition must be accurately fused to the planning CT dataset to ensure spatial linearity and precise anatomical localization.

CT is the most useful, spatially undistorted, and practical imaging modality for SBRT. It permits the creation of the 3-D anatomical patient model and electron density distribution that are used in the treatment planning and dose calculation processes. Some CT considerations include partial volume averaging, pixel size, slice thickness, distance between slices, and timing of CT with respect to contrast injection, contrast washout, and image reformatting for the treatment planning system, as well as potential intrascan organ movement.

In some cases target tissues and normal tissue structures may be better visualized by MRI. The considerations enumerated for CT also apply to the use of MRI. Additional caution is warranted in MRI because of magnetic susceptibility artifacts and image distortion. As such, use of MRI must be verified with CT images. Techniques such as combining MRI with CT images via image fusion can be used to minimize geometrical distortions inherent in MR images.

2. Quality control for the treatment planning system

Documentation must exist indicating that the medical physicist has authorized the system for clinical use and has established a QC program to monitor the treatment planning system’s performance as it relates to the SBRT planning process.
Data input from medical imaging devices is used in conjunction with a mathematical description of the external radiation beams to produce an anatomically detailed patient model illustrating the dose distribution with a high degree of precision.

Both dosimetric and/or nondosimetric elements may be included in a QC program. Furthermore, it is recognized that various testing methods may be used, with equal validity, to assure that a system feature or component is performing correctly. It is also noted that the commercial manufacturer may recommend specific QC tests to be performed on its planning systems. For these reasons, the important elements of the QC program for the 3-D image-based treatment planning system are identified below, but the method and testing frequency are not specified.

a. System log
 Maintain an ongoing system log indicating system component failures, error messages, corrective actions, and system hardware/software changes.

b. System data input devices
 Check the input devices (input interfaces, digitizers, etc) for functionality and accuracy of the planning system(s) for all relevant medical imaging data (CT, MRI, PET, etc). Assure correct anatomical registration: left; right; anterior; posterior; cephalad; and caudad from all the appropriate input devices.

c. System output devices
 Assure functionality and accuracy of all printers, plotters, and graphical display units that use digitally reconstructed radiographs (DRRs) or the like to produce a beam’s-eye-view rendering of anatomical structures near the treatment beams isocenter. Assure correct information transfer and appropriate dimensional scaling.

d. System software
 Assure the continued integrity of the planning system information files used for modeling the external radiation beams. Verify transfer of multileaf collimator data and other treatment-related parameters. Confirm agreement of the beam modeling with currently accepted clinical data derived from physical measurements. Similarly, assure the integrity of the system to render the anatomical modeling correctly.

e. Operational testing
 Once the individual components of the SBRT planning and treatment technique are commissioned, it is recommended that the QC program include an operational test of the SBRT system. This test should be performed before proceeding to treat patients. The operational test should mimic the patient treatment and should use all of the same equipment used for treating the patient. An added benefit to the above approach is the training of each team member for his/her participation in the procedure.

VI. SIMULATION AND TREATMENT

The tolerance for radiation targeting accuracy, which includes accounting for systematic and random errors associated with setup and target motion, needs to be determined for each different organ system in each department performing the SBRT by actual measurement of organ motion and setup uncertainty.

A. Positioning and Immobilization

For frame-based stereotaxy, fiducials are rigidly attached to nondeformable objects reliably registered to the target. Given potential changes in the internal location of mobile tumors relative to external frames, frame-based methods must be supplemented with some form of pretreatment image guidance to confirm proper tumor relocalization.

Frameless stereotaxy uses the fiducials that are registered immediately before or during the targeting procedure. Examples of frameless stereotaxy include image capture of 1 or more metallic seeds (each constituting a single
fiducial) placed within or near a tumor, using surrogate anatomy such as bone (constituting a volumetric fiducial) whose position is well established in relation to the target or using the target itself (eg, identified on the image guidance system).

The patient is positioned appropriately with respect to the stereotactic coordinate system used, ensuring that the target is within physically attainable fiducial space. The treatment position should be comfortable enough for the patient to hold still for the entire duration of the SBRT procedure. Immobilization may involve the use of devices such as a thermoplastic mold or mask, a vacuum mold, a vacuum pillow, or immobilization cushions.

B. Respiratory Motion Assessment and Control Techniques

Following the choice of positioning and immobilization, methods to manage tumor motion during simulation and treatment are undertaken. This activity is divided into 2 distinct phases: 1) motion assessment, and 2) motion control.

Motion assessment is the process whereby the actual time-dependent 3-D displacements of the tumor target or a reliable surrogate is quantified. Motion assessment is typically performed with 4-D CT but can also be performed with real-time fluoroscopy or other time-dependent imaging platforms. The quantified time-dependent motion trajectory for the specific patient’s tumor is considered in the context of the planning processes, techniques, and constraints with specific emphasis on the method of motion control utilized. For example, treatment planning using an ITV/PTV expansion approach requires the motion envelop to be very similar in size to the target volume (ie, very little motion) to avoid unacceptable toxicity after delivery of ablative dose. In contrast, tumors that can be effectively tracked or gated may be allowed to have considerably larger motion envelop. In either case, the target displacements over time should be quantified in 3-D planes to create custom motion control.

Motion control techniques include abdominal compression, breath-hold, gating, and tracking. Breath-hold and gating are associated with a duty cycle where the beam is engaged and disengaged based on an ongoing understanding of the tumor’s position. Tracking requires an accurate motion model to “predict” the location of the tumor in the next moment. Abdominal compression techniques attempt to constrain the patient to perform relatively more chest wall breathing as opposed to diaphragmatic breathing (the former is associated with less motion). In any case, the method of motion control utilized must be consistently applied throughout the simulation, planning, and treatment process.

4-D CT scans are particularly useful for creating more accurate representations of motion effects and facilitating treatment planning. Reconstructed datasets such as the maximum and minimum intensity projections (MIP and MinIP) can be useful for determining the motion envelopes for lung and liver tumors during the treatment planning process. In turn, the average intensity projection is used by many centers as the planning dataset for dosimetry, especially when used in conjunction with abdominal compression. Simulation is performed with the respiratory control systems activated. MRI simulation or fusion of MRI and CT images may be necessary as well.

There should be a QC program for the method of respiratory motion assessment and control used, and the clinical tolerances should be explicitly determined.

C. Treatment Planning

Treatment planning involves contouring of GTV and the normal structures, review of iterations of treatment plans for PTV adequate dose coverage, review of proper falloff gradients, and review of dose/volume statistics by the radiation oncologist. Every effort should be made to minimize the volume of surrounding normal tissues exposed to high dose levels. This requires minimizing the consequential high dose (ie, dose levels on the order of the prescription dose) resulting from entrance of beams, exit of beams, scatter radiation, and enlargement of beam apertures required to allow for target position uncertainties. The target dose distribution conforms to the shape of the target, thereby avoiding unnecessary prescription dose levels occurring within surrounding normal tissues. Quantification of the dose/volume statistics for the surrounding tissues and organs is needed so that volume-based tolerances are not exceeded. It should be understood that reduction of high dose levels within normal tissue volume may require additional exposure of normal tissues to low dose levels (ie, increased integral dose).
The planning system must support dose calculation algorithms that accurately represent the dose deposition within heterogeneous media.

D. Treatment Delivery and Verification

Precision should be validated by the QC process and maintained throughout the entire treatment process.

The radiation oncologist is responsible for assuring that patient positioning and field placement are accurate for each fraction. The image-guided stereotactic procedure is used to verify or correct the patient’s position relative to the planning image dataset. However, it is important to point out that any electrical, software, or mechanical malfunctions that disturb the connection between the image guidance system and the treatment delivery system can produce erroneous results that are not easily detected through visual examination of the patient’s position in the treatment room. In those situations where the target or an acceptable surrogate can be seen with the aid of an imaging procedure that uses the treatment beam, verification of the target position is possible. When the image guidance system does not use the treatment beam and no secondary system is available, the QA test described above is the only reasonable way of determining that the overall imaging plus treatment delivery system is communicating properly.

VII. FOLLOW-UP

There should be follow-up of all patients treated, and appropriate records should be maintained to determine local control, survival, and normal tissue injury. It is recommended that the treating radiation oncologist be involved in the clinical follow-up and review the post-SBRT diagnostic system as some abnormal radiographic changes, often mistaken as tumor progression, may actually be post-treatment effects. As with any form of radiation therapy, there is a potential risk of subacute or late toxicity that may occur months or even years after treatment. The data should be collected in a manner that complies with statutory and regulatory peer-review procedures to protect the confidentiality of the peer-review data.

VIII. SUMMARY

The quality of a stereotactic body radiation therapy program depends on the coordinated interactions of a team of skilled health care professionals. A high degree of spatial accuracy is necessary in the treatment planning and delivery process. Since SBRT uses either single-fraction treatment or a hypofractionated regimen, there is little chance for adjustment once treatment has been initiated. This demands considerable time for planning and treatment verification by the radiation oncologist and medical physicist.

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Practice Parameters – Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ASTRO.

Collaborative Committee
Members represent their societies in the initial and final revision of this practice parameter.

ACR
Jeffrey D. Bradley, MD, FACR, Chair
Joe Y. Chang, MD, MS, PhD
Robert D. Timmerman, MD
Gregory M. Videtic, MD, CM
ASTRO
James M. Balter, PhD
Stanley H. Benedict, PhD
Nora A. Janjan, MD, MPSA, MBA, FACP, FACR, FASTRO, FASCO
Minesh P. Mehta, MD
Samuel Ryu, MD
Timothy D. Solberg, PhD, FACR, FAAPM, FACMP

Committee on Practice Parameters – Radiation Oncology
(ACR Committee responsible for sponsoring the draft through the process)

Alan C. Hartford, MD, PhD, Chair
Patrick D. Conway, MD, FCR
Neil B. Desai, MD
Nancy A. Ellerbroek, MD, FCR
Roger M. Gilbert, MD, FCR
Geoffrey S. Ibbott, PhD, FCR, FAAPM
Bill W. Loo, MD, PhD
Tariq A. Mian, PhD, FCR, FAAPM
Jeff M. Michalski, MD, MBA, FCR
Suzanne L. Wolden, MD, FCR
Bassem I. Zaki, MD
Seth A. Rosenthal, MD, FCR, FASTRO, Chair, Commission on Radiation Oncology

Comments Reconciliation Committee
Sanjay K. Shetty, MD, MBA, Chair
David C. Beyer, MD, FCR, Co-Chair
Kimberly E. Applegate, MD, MS, FCR
James M. Balter, BS
Stanley H. Benedict, PhD
Jeffrey D. Bradley, MD, FCR
Joe Y. Chang, MD, MS, PhD
Bruce H. Curran, MS, ME
Sonja Dieterich, PhD
Martin W. Fraser, MS, FCR
Per H. Halvorsen, MS, FCR
Alan C. Hartford, MD, PhD
William T. Herrington, MD, FCR
Nora A. Janjan, MD, MBA, FACP, FCR, FASTRO, FASCO
Minesh P. Mehta, MD
David E. Morris, MD
Seth A. Rosenthal, MD, FCR, FASTRO
Samuel Ryu, MD
Timothy D. Solberg, PhD, FCR, FAAPM, FACMP
Robert D. Timmerman, MD
Gregory M. Videtic, MD, CM

REFERENCES

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
2004 (Resolution 20)
Amended 2006 (Resolution 16g, 36)
Revised 2009 (Resolution 4)
Revised 2014 (CSC/BOC) – Effective June 25, 2014