The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2015 (Resolution 47)*

ACR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF RADIONUCLIDE CYSTOGRAPHY

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR).

This practice parameter is intended to guide interpreting physicians in performing radionuclide cystography (RNC) in adult and pediatric patients. Properly performed imaging of the bladder with radiopharmaceuticals provides a sensitive means of detecting, evaluating, and following certain conditions of the bladder and ureters. As with all scintigraphic examinations, correlation of findings with the results of other imaging and nonimaging procedures, as well as clinical information, is necessary for maximum diagnostic yield.

Application of this practice parameter should be in accordance with the ACR–SNM Technical Standard for Diagnostic Procedures Using Radiopharmaceuticals [1].

(For pediatric considerations see sections VI and VII.)

II. DEFINITION

RNC involves filling the urinary bladder with a radiopharmaceutical, either by direct (retrograde) administration via catheter or by indirect (antegrade) drainage of an intravenously administered radiopharmaceutical that is excreted by the kidneys, and subsequent imaging with a gamma camera.

III. GOAL

The goal of RNC is to enable the performing/interpreting physician to detect and quantify physiologic and anatomic abnormalities of the urinary system by producing diagnostic-quality images.

IV. INDICATIONS

Clinical indications [2-4] for RNC include, but are not limited to, the following:

1. Initial diagnosis of vesicoureteral reflux in female patients with urinary tract infection
2. Diagnosis of vesicoureteral reflux in children with a family history of vesicoureteral reflux
3. Diagnosis of vesicoureteral reflux in renal transplant recipients
4. Diagnosis and follow-up of vesicoureteral reflux in infants and children with hydronephrosis (eg, persistent prenatal hydronephrosis)
5. As a follow-up examination to assess spontaneous resolution of known vesicoureteral reflux
6. As a follow-up examination to evaluate resolution of vesicoureteral reflux after medical or surgical management
7. Serial evaluation of vesicoureteral reflux in patients with bladder dysfunction
8. Quantification of postvoid residual urine in bladder

For information on radiation risks to the fetus, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [5].

V. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR–SNM Technical Standard for Diagnostic Procedures Using Radiopharmaceuticals [1].

VI. RADIOPHARMACEUTICALS

The direct (retrograde) technique (see VII.A.) employs technetium-99m sodium pertechnetate, technetium-99m sulfur colloid, or technetium-99m diethylenetriamine pentaacetic acid (DTPA). Technetium-99m sodium pertechnetate should not be used in individuals who have undergone bladder augmentation with gastric or

2 / Radionuclide Cystography
intestinal tissue. An administered activity of 18.5 to 37 MBq (0.5 to 1.0 mCi) is introduced aseptically into the urinary bladder via a urethral catheter. Administered activity in children should be as low as reasonably achievable for diagnostic image quality. The North American Consensus Guidelines for Administered Radiopharmaceutical Activities in Children and Adolescents recommend no more than 37 MBq (1 mCi) for each cycle of filling in pediatric patients. No weight-based administered activity has been defined for radionuclide cystography [6].

The indirect (antegrade) technique (see VII.B.) employs technetium-99m mercaptoacetyltriglycine (MAG-3).

VII. SPECIFICATIONS OF THE EXAMINATION

The written or electronic request for radionuclide cystography should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state’s scope of practice requirements. (ACR Resolution 35, adopted in 2006)

A. Retrograde (Direct) Technique

For infants and children, refer to the ACR–SPR Practice Parameter for the Performance of Voiding Cystourethrography in Children [7].

1. Patient preparation/catheterization

To measure residual bladder volume directly, the patient should be asked to void immediately before catheterization. Urine collected during catheterization represents the residual bladder volume [4]. Latex materials should be avoided and should not be used in patients with a known latex allergy or at high risk for latex allergy (eg, older patients with multiple surgical procedures of the spine or genitourinary tract). In male patients, application of urethral anesthesia (eg, lidocaine jelly) before catheterization may decrease discomfort [8]. Sedation should be avoided because sedatives relax the ureterovesicualar junction musculature, interfering with the normal ureterovesicualar valvular mechanism and potentially causing pharmacologically induced reflux. The bladder is catheterized using aseptic technique and, if clinically desired, a urine specimen can be obtained at this time for culture.

2. Radiopharmaceutical infusion

The radiopharmaceutical is administered aseptically into the bladder through the urinary catheter, and then sterile normal saline is infused until the bladder reaches capacity with the patient lying supine. The saline container typically is placed no more than 100 cm above the tabletop. Warming the saline solution to room or body temperature and infusing at a slow rate may improve the comfort of the patient. Alternatively, in adults, the radiopharmaceutical may be added to 500 mL of sterile normal saline for infusion. Patients with neurogenic bladders might require more than 500 mL. It is, however, a less suitable alternative, as some of the radiopharmaceutical does not arrive in the bladder until maximal filling.
3. Image acquisition

In all patients during filling, the pelvis and abdomen are imaged continuously in the posterior projection, with the patient lying supine. During voiding, images are obtained continuously, either in the seated upright position in adults and toilet-trained children who are able to sit on the bedpan or in the supine position in patients who are unable to sit. Digital data acquisition is recommended. If reflux occurs during filling of the bladder, the volume at which reflux occurred should be recorded. The end of the filling phase usually is indicated by a reduction or cessation of the infusate’s rate of flow or by achieving maximum bladder capacity [4]. In children, bladder volume can be approximated either with the formula \((\text{age in years } + 2) \times 30 \text{ mL} = \text{bladder volume}\) or with a reference table [9].

When the bladder reaches maximum capacity, the patient is instructed to void or when the patient begins to void spontaneously, imaging is continued until the bladder is empty. In patients able to cooperate, voiding images may be obtained with the patient upright. Postvoid posterior images of the bladder should be obtained in either the supine or upright position after bladder emptying is complete. If the patient cannot void upon request, emptying the bladder via the urinary catheter will reduce radiation exposure. In infants and children, a cyclic (more than one filling and voiding) examination may increase sensitivity. Repeat filling and voiding cycles are obtained with the catheter remaining in place for all cycles.

4. Processing

For visual analysis of digital images, a consistent image display technique capable of contrast enhancement and cine mode should be used to maximize the sensitivity of the test and by detecting the smallest amounts of reflux. Quantification of reflux during the bladder-filling phase and during the voiding phase may be achieved using region-of-interest (ROI) analysis, with ROI placed over the kidneys and the ureters.

For quantification of postvoid residual volumes, prevoid and postvoid images of the bladder should be acquired anteriorly or posteriorly. ROIs are drawn over the bladder on both sets of images. The volume of voided urine is recorded. Residual volume (RV) can be estimated by the following formulas:

\[
RV (\text{mL}) = \frac{(\text{voided vol [mL]})(\text{postvoid bladder ROI count})}{(\text{initial bladder ROI count}) - (\text{postvoid bladder ROI count})}
\]

Residual volume may be calculated if the volume to which the bladder was filled is known. The equation then becomes:

\[
RV (\text{mL}) = \frac{(\text{initial bladder vol [mL]})(\text{postvoid bladder ROI count})}{\text{initial bladder ROI count}}
\]

5. Interpretation

The degree of reflux is estimated using a visual grading scale with RNC grades 1 to 3 as below [4,10-12].

<table>
<thead>
<tr>
<th>RNC Grades</th>
<th>Finding</th>
<th>Analogous Radiographic Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Mild)</td>
<td>Activity limited to ureter</td>
<td>I</td>
</tr>
<tr>
<td>2 (Moderate)</td>
<td>Activity reaching the renal collecting system</td>
<td>II and III</td>
</tr>
<tr>
<td>3 (Severe)</td>
<td>Activity in dilated renal collecting system and ureter</td>
<td>IV and V</td>
</tr>
</tbody>
</table>
Careful review of available previous radiographic, ultrasound, and radionuclide examinations will add to the accuracy of interpretation of the current examination.

6. Instructions to patient/parent

The radiation exposure to the bladder, although small and well within accepted diagnostic imaging levels, can be further reduced by a postexamination diuresis. Instruction to drink fluids by mouth for several hours with frequent voiding following the examination should be given to the patient, parent, or caregiver.

B. Indirect (Antegrade) Technique

This test usually is performed as the final part of a dynamic renal scan. Administered activity is the same for renal scintigraphy (see the ACR–SPR Practice Parameter for the Performance of Renal Scintigraphy [13]), with which this technique can be combined.

The advantages of the indirect technique are that it is noninvasive and it provides information about renal function. A disadvantage is a lower sensitivity than direct RNC because a) the bladder may fill only partially; b) reflux can be detected only during the voiding phase; and c) it may be difficult to differentiate between reflux and residual antegrade excretion [14-16]. Use of ROIs over the collecting systems and time-activity curves may enhance the sensitivity of indirect radionuclide cystography for detecting vesicoureteral reflux. Indirect cystography should not be used if the patient has not been toilet trained or has impaired renal function [11,14-16].

VIII. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [17].

The report should include the radiopharmaceutical used, the administered activity, and route of administration, as well as any other pharmaceuticals administered, including their dose and route of administration.

IX. EQUIPMENT SPECIFICATIONS

A gamma camera with a low-energy all-purpose/general all-purpose (LEAP/GAP) or high-resolution collimator may be desirable. If the clinical question relates to vesicoureteral reflux, the field of view must be large enough to include both the bladder and kidneys. For infants and small children, magnification may be used if a large-field-of-view camera head (400 mm) is employed.

Digital acquisition may be desirable and is necessary if quantification is performed. A 64 x 64 acquisition matrix is sufficient for detectors up to 400 mm in diameter. For larger detectors, a 128 x 128 matrix is needed. A framing rate of 10 to 30 seconds per frame is suggested. The collimator face and the entire imaging field must be protected from radiopharmaceutical contamination using plastic-backed absorbent pads or other similar material. Plans for collection, disposal, storage, or decontamination of radioactive urine and materials must be considered.

X. RADIATION SAFETY

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the
key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels). http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf.

Facilities and their responsible staff should consult with the radiation safety officer to ensure that there are policies and procedures for the safe handling and administration of radiopharmaceuticals and that they are adhered to in accordance with ALARA. These policies and procedures must comply with all applicable radiation safety regulations and conditions of licensure imposed by the Nuclear Regulatory Commission (NRC) and by state and/or other regulatory agencies. Quantities of radiopharmaceuticals should be tailored to the individual patient by prescription or protocol.

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR Technical Standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).

XI. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Medical Nuclear Physics Performance Monitoring of Gamma Cameras [18].

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Practice Parameters – Nuclear Medicine and Molecular Imaging of the ACR Commissions on Nuclear Medicine and Molecular Imaging and the Committee on Practice Parameters – Pediatric Radiology of the ACR Commission on Pediatric Radiology in collaboration with the SPR.

Collaborative Committee
Members represent their societies in the initial and final revision of this practice parameter.

ACR
Chun K. Kim, MD, Chair
Frederick D. Grant, MD
Neha S. Kwatra, MD

SPR
Hedieh K. Eslamy, MD
Nadia F. Mahmood, MD
Sabah Servaes, MD
Jennifer L. Williams, MD

Committee on Practice Parameters and Technical Standard – Nuclear Medicine and Molecular Imaging
(ACR Committee responsible for sponsoring the draft through the process)

Bennett S. Greenspan, MD, MS, FACP, Co-Chair
Christopher J. Palestro, MD, Co-Chair
Thomas W. Allen, MD
Kevin P. Banks, MD
Murray D. Becker, MD, PhD
Richard K.J. Brown, MD, FACP
Shana Elman, MD
Perry S. Gerard, MD, FACP
Warren R. Janowitz, MD, JD, FACP
Chun K. Kim, MD
Charito Love, MD
Joseph R. Osborne, MD, PhD
Darko Pucar, MD, PhD
Rathan M. Subramaniam, MD, PhD, MPH
Scott C. Williams, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Eric N. Faerber, MD, FACP, Chair
Richard M. Benator, MD, FACP
Lorna P. Browne, MB, BCh
Timothy J. Carmody, MD
Brian D. Coley, MD, FACP
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn A. Fordham, MD, FACP
Kerri A. Highmore, MD
Tal Laor, MD
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD

M. Elizabeth Oates, MD, Chair, Commission on Nuclear Medicine and Molecular Imaging
Marta Hernandez-Schulman, MD, FACP, Chair, Commission on Pediatric Radiology
Debra L. Monticciolo, MD, FACP, Chair, Commission on Quality and Safety
Jacqueline Anne Bello, MD, FACP, Vice-Chair, Commission on Quality and Safety
Julie K. Timins, MD, FACP, Chair, Committee on Practice Parameters and Technical Standards
Matthew S. Pollack, MD, FACP, Vice-Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Darlene F. Metter, MD, FACP, Chair
Christopher G. Ullrich, MD, FACP, Co-Chair
Kimberly E. Applegate, MD, MS, FACP
REFERENCES

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
1996 (Resolution 12)
Revised 2000 (Resolution 26)
Revised 2005 (Resolution 24)
Amended 2006 (Resolution 17, 35)
Revised 2010 (Resolution 25)
Amended 2012 (Resolution 8 – title)
Amended 2014 (Resolution 39)
Revised 2015 (Resolution 47)