ACR–SPR PRACTICE PARAMETER FOR GENERAL RADIOGRAPHY

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, 713 N.W.2d 997 (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR).

Diagnostic imaging is guided by the ACR principles of Image Wisely® and Image Gently®. Imaging is performed only for indications that meet the standard of medical necessity, considering guidelines embodied in ACR appropriateness criteria. Radiography is a proven and useful modality that uses differences in X-ray attenuation to evaluate human anatomy and pathology. The goals are to establish the presence or absence of disease, determine its etiology, and follow its course when the latter is clinically warranted. The study should be performed by utilizing a radiation dose that optimizes image diagnostic information and minimizes radiation exposure.

This practice parameter applies only to general radiography. If an ACR practice parameter or technical standard exists for a specific type of radiographic examination being performed, that practice parameter or technical standard may identify additional physician requirements for nonradiologists based on the specifics of the examination.

For pediatric considerations see section IV.8.

II. INDICATIONS AND CONTRAINDICATIONS

Medical imaging is performed only when there is a valid clinical indication to do so and when the findings are likely to affect clinical decision making. Each formal request for medical imaging requires adequate clinical information to justify the study. ACR Appropriateness Criteria® should be considered when choosing the appropriate imaging procedure for the clinical situation. Examinations that are not medically necessary should not be performed.

For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [1].

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

A. Physician

1. Images must be obtained under the supervision of, and interpreted by, a licensed physician with the following qualifications:
 a. Certification in Radiology, Diagnostic Radiology or Interventional Radiology/Diagnostic Radiology (IR/DR) by the American Board of Radiology, the American Osteopathic Board of Radiology, the Royal College of Physicians and Surgeons of Canada, or the Collège des Médecins du Québec.
 or
 b. Completion of a diagnostic radiology residency program approved by the Accreditation Council for Graduate Medical Education (ACGME), the Royal College of Physicians and Surgeons of Canada (RCPSC), the Collège des Médecins du Québec, or the American Osteopathic Association (AOA) to include radiographic training on all body areas and documentation of a minimum of 6 months of formal dedicated training in the interpretation and formal reporting of general imaging for patients of all ages.

 and

2. The physician should have documented training in and understanding of the physics of diagnostic radiography and experience with the equipment needed to safely produce the images.

 and

3. The physician must be familiar with the principles of radiation protection, the hazards of radiation, and radiation monitoring requirements.

 and

4. The physician must have documented training and an understanding of other medical imaging modalities (eg, fluoroscopy, computed tomography, ultrasound, magnetic resonance imaging, nuclear medicine) in
order to determine the best imaging examination to answer clinical questions and ensure diagnostic efficiency and patient safety.

Maintenance of Competence

All physicians interpreting general radiography examinations should demonstrate evidence of continuing competence in the interpretation and reporting of those examinations.

Continuing Medical Education

The physician’s continuing medical education should be in accordance with the ACR Practice Parameter for Continuing Medical Education (CME) and should include CME in general radiography as is appropriate to his/her practice [2].

B. Qualified Medical Physicist

A Qualified Medical Physicist is an individual who is competent to practice independently in one or more of the subfields in medical physics. The American College of Radiology (ACR) considers certification, continuing education, and experience in the appropriate subfield(s) to demonstrate that an individual is competent to practice one or more of the subfields in medical physics and to be a Qualified Medical Physicist. The ACR strongly recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, or by the American Board of Medical Physics (ABMP).

A Qualified Medical Physicist should meet the ACR Practice Parameter for Continuing Medical Education (CME). (ACR Resolution 17, 1996 – Revised 2012, Resolution 42) [2]

The appropriate subfields of medical physics for this parameter are Therapeutic Medical Physics and Diagnostic Medical Physics (including medical physics certification categories of Radiological Physics, Therapeutic Medical Physics, Radiological Physics, and Diagnostic Imaging Physics).

C. Registered Radiologist Assistant

A registered radiologist assistant is an advanced level radiographer who is certified and registered as a radiologist assistant by the American Registry of Radiologic Technologists (ARRT) after having successfully completed an advanced academic program encompassing an ACR/ASRT (American Society of Radiologic Technologists) radiologist assistant curriculum and a radiologist-directed clinical preceptorship. Under radiologist supervision, the radiologist assistant may perform patient assessment, patient management and selected examinations as delineated in the Joint Policy Statement of the ACR and the ASRT titled “Radiologist Assistant: Roles and Responsibilities” and as allowed by state law. The radiologist assistant transmits to the supervising radiologists those observations that have a bearing on diagnosis. Performance of diagnostic interpretations remains outside the scope of practice of the radiologist assistant. (ACR Resolution 34, adopted in 2006 – revised in 2016, Resolution 1-c) [3]

D. Radiologic Technologist

Certification by the American Registry of Radiologic Technologists (ARRT) or an unrestricted state license is required. Certification by ARRT is strongly encouraged.

IV. SPECIFICATIONS OF THE EXAMINATION

The written or electronic request for general radiography should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a
provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006 – revised in 2016, Resolution 12-b)

1. All images should be labeled with the following information: (a) patient identification, (b) facility identification, (c) examination date and time, and (d) the side (right or left) of the anatomic site imaged.

2. All facilities performing radiography should have protocols for the standard view or views of each anatomic area of interest. These should be designed to optimize diagnostic information while minimizing radiation exposure.

3. Appropriate collimation should be used to limit exposure to the anatomic area of interest.

4. All facilities performing radiography should have technique charts, or protocols in generator memory, for all anatomic parts, listing exposure factors that will reliably produce diagnostic-quality images of patients of different sizes, to minimize the need for repeat exposures.

5. Whenever feasible, images should be reviewed for diagnostic quality before the patient is released. Repeat imaging should be performed as appropriate when necessary for diagnostic quality.

6. All facilities producing images should have policies and procedures for appropriate patient shielding.

7. Appropriate immobilization and assistance procedures should be available to ensure that images of diagnostic quality can be obtained in patients who are unable to cooperate or unable to be positioned in the usual manner because of age or physical limitations, while avoiding unnecessary irradiation of health care workers.

8. For pediatric patients, specific efforts should be made to reduce radiation dose, when diagnostically feasible.
 a. Technique charts should be tailored for part thickness.
 b. A grid should not be used for radiographic examinations of body parts less than 12 cm in thickness.
 c. For the larger adolescent child, technique parameters should be similar to those for adult patients.
 d. Gonadal shielding should be used when appropriate.

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings[4].

VI. EQUIPMENT SPECIFICATIONS

A. The diagnostic radiographic equipment and facility must meet all applicable federal and state radiation standards.

B. Where digital imaging is used, the equipment should meet the specifications described in the ACR–AAPM–SIIM Technical Standard for the Electronic Practice of Medical Imaging [5] and the ACR–AAPM–SIIM Practice Parameter for Digital Radiography [6].

C. Where an analog film system is used, appropriate screen-film and grid combinations should be available to obtain diagnostic images of all anatomic areas to be imaged.
VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels).

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.

Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR Technical Standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels andAchievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards).

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Radiographic Equipment and the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Fluoroscopic Equipment [7,8]. A quality monitoring mechanism should be in place for tracking, recording, and evaluating errors in technique.

All facilities should have quality improvement processes where technologists or their supervisors receive feedback regarding X-ray image adequacy for both exposure technique and patient positioning. Reject rates should be part of the routine quality control process [9].
ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Guidelines and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters – General, Small, Emergency and/or Rural Practice of the ACR Commission on General, Small, Emergency and/or Rural Practice and the Committee on Practice Parameters – Pediatric Radiology of the ACR Commissions on Pediatric Radiology in collaboration with the SPR.

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR
Scott A. Simpson, MD, Chair
Lynn Ansley Fordham, MD, FACR
Ralph P. Lieto, MS, FACR

SPR
Michael R. Aquino, MD
Vctor M. Ho-Fung, MD
George C. Koberlein, MD

Committee on Practice Parameters – General, Small, Emergency and/or Rural Practices
(ACR Committee responsible for sponsoring the draft through the process)

Sayed Ali, MD, Chair
Marco A. Amendola, MD, FACR
Lynn Broderick, MD, FACR
Resmi A. Charalel, MD
Brian D. Gale, MD, MBA
Carolyn A. Haerr, MD
Charles E. Johnson, MD

Candice Johnstone, MD
Padmaja A. Jonnalagadda, MD
Steven E. Liston, MD, MBA, FACR
Tammam Nehme, MD
Samir S. Shah, MD
Jennifer L. Tomich, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Beverley Newman, MB, BCh, BSc, FACR, Chair
Lorna P. Browne, MB, BCh
Timothy J. Carmody, MD, FACR
Brian D. Coley, MD, FACR
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn Ansley Fordham, MD, FACR
Kerri A. Highmore, MD

Sue C. Kaste, DO
Tal Laor, MD
Terry L. Levin, MD, FACR
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD

Robert S. Pyatt, Jr., MD, FACR, Chair, Commission on General, Small, Emergency and/or Rural Practices
Marta Hernanz-Schulman, MD, FACR, Chair, Commission on Pediatric Radiology
Jacqueline Anne Bello, MD, FACR, Chair, Commission on Quality and Safety
Matthew S. Pollack, MD, FACR, Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee

Richard B. Gunderman, MD, PhD, FACR, Chair
Debra S. Dyer, MD, FACR, Co-Chair
Sayed Ali, MD
Michael R. Aquino, MD
Jacqueline Anne Bello, MD, FACR
Craig E. Clark, MD
Richard Duszak, Jr., MD, FACR
Kate A. Feinstein, MD, FACR
Lynn Ansley Fordham, MD, FACR
Richard A. Geise, PhD, FACR, FAAPM

Marta Hernanz-Schulman, MD, FACR
Victor M. Ho-Fung, MD
George C. Koberlein, MD
Ralph P. Lieto, MS, FACR, FAAPM
Barbara L. McComb, MD, FACR
Beverley Newman, MB, BCh, BSc, FACR
Matthew S. Pollack, MD, FACR
Robert S. Pyatt, Jr., MD, FACR
Scott A. Simpson, MD
Timothy L. Swan, MD, FACR, FSIR
REFERENCES

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
1999 (Resolution 23)
Revised 2000 (Resolution 35)
Amended 2002 (Resolution 2)
Amended 2006 (Resolution 16g, 17, 34, 35, 36)
Amended 2007 (Resolution 13)
Revised 2008 (Resolution 31)
Amended 2009 (Resolution 11)
Revised 2013 (Resolution 30)
Amended 2014 (Resolution 39)
Revised 2018 (Resolution 38)
Amended 2018 (Resolution 44)