The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2016 (Resolution 2)*

ACR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF ABDOMINAL RADIOGRAPHY

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR).

Over the last 2 decades, the role of plain radiography in the evaluation of intra-abdominal disease has been largely supplanted by other imaging modalities, such as computed tomography (CT), ultrasound, nuclear medicine, and magnetic resonance imaging (MRI) [1-5]. However, the abdominal radiograph is still a frequently obtained examination. It continues to play an important role in a number of clinical conditions, enumerated in the following section.

Abdominal radiography consists of views in supine and/or horizontal beam (upright, decubitus, or cross-table lateral) projections. Additional views in other projections or patient positions are occasionally necessary to supplement the basic views. In some clinical situations a single image is appropriate. The examination may be performed with portable equipment when clinically appropriate. Abdominal radiography should be performed only for a valid medical reason and with the minimum radiation dose necessary to achieve a diagnostic study. Although it is not possible to detect all abnormalities using abdominal radiography, adherence to the following practice parameter will maximize the diagnostic yield.

(For pediatric considerations, see sections II and IV.B.)

II. INDICATIONS/CONTRAINDICATIONS

Indications for abdominal radiography include, but are not limited to:

1. Evaluation and follow-up of abdominal distension, bowel obstruction, or nonobstructive ileus [1,5-9]
2. Constipation, especially assessment of fecal load in children† [10,11]
3. Evaluation for necrotizing enterocolitis, particularly in the premature newborn* [12]
4. Evaluation of congenital gastrointestinal abnormalities [13,14]
5. Follow-up of the postoperative patient, including detection of inadvertent retained surgical foreign bodies [15-17]
6. Evaluation and follow-up of urinary tract calculi, including assessment of lithotripsy patients [9,18,19]
7. Evaluation of ingested or other introduced foreign bodies [20-23]
8. A scout radiograph prior to a planned imaging examination, ie, fluoroscopy [24-26]
9. Evaluation of the placement of medical devices [27,28]
10. Evaluation for pneumoperitoneum [6,7,9,29]
11. Evaluation of possible toxic megacolon [30-33]
12. Evaluation of unstable patients after blunt trauma to the abdomen [34]
13. Evaluation of a palpable mass in an infant or child§ [35,36]
14. Localization of pancreatic duct stone pre-lithotripsy and endoscopic stone removal [37]
15. Evaluation for suspected retained video endoscopy capsule and determination of location of patency capsule
16. Evaluation of colon transit time using the simplified radiodense marker colon transit test

There are no absolute contraindications to abdominal radiography. Pregnancy is a relative contraindication to abdominal radiography because the uterus is within the primary beam for almost all examinations. If diagnostically appropriate, ultrasound or MRI should be considered as an alternative imaging modality. For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [38].

† However, recent studies suggest abdominal radiographs are of limited value in the child with constipation [39,40].
* Ultrasound may be helpful in evaluation [41].
§ Ultrasound may be helpful in evaluation, to be followed by MRI if ultrasound is inconclusive.
III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR–SPR Practice Parameter for General Radiography [42].

Physicians whose training did not fulfill the qualifications set forth in the ACR–SPR Practice Parameter for General Radiography [42] may still be considered qualified to interpret abdominal radiographs providing the following can be demonstrated:

1. The physician has supervised and interpreted abdominal radiographs for at least 2 years.
2. An official interpretation (final report) was generated for each study.

IV. SPECIFICATIONS OF THE EXAMINATION

The written or electronic request for abdominal radiography should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state’s scope of practice requirements. (ACR Resolution 35, adopted 2006)

Appropriate clinical history and the reason for the examination should be provided by the requesting provider or his/her authorized agent.

A. Patient Selection and Preparation

No prior preparation of the patient is usually required for abdominal radiography. External and artifactual densities outside the patient should be removed whenever possible. Immobilization of the patient may occasionally be required.

B. Examination Technique

1. Technical factors

In adults, abdominal radiography is usually performed on a 35 x 43 cm (14 x 17 in) film or image receptor. For children, the image size should be adjusted to the size of the patient. When the patient can cooperate, the radiograph is exposed at end expiration. Low kVp technique (60 to 75 kVp) is preferable [9,24], although kVp should be appropriate to patient size and clinical indication. In obese patients, increasing beam energy may be necessary to obtain acceptable image quality and also to decrease patient dose, which can be substantially higher than in lean patients [43]. The exposure time should be kept as short as practical to minimize motion artifact. This may be difficult to achieve when using portable radiography in larger adult patients. A grid (moving or stationary) is desirable for adults and larger pediatric patients. Proper collimation is required for all patients. Gonadal shielding may be used when appropriate and feasible [44].

2. Examination components

The abdominal radiography examination typically consists of views in supine anteroposterior (AP) and/or horizontal beam (upright, decubitus, or cross-table lateral) projections. Some institutions also use an
 upright posteroanterior (PA) or AP chest radiograph as part of an abdominal series to evaluate for pneumoperitoneum or causes of referred abdominal pain. In some instances, a combination of a supine abdominal radiograph and an upright chest radiograph with elimination of a horizontal beam view of the abdomen may be performed without loss of significant diagnostic information [45,46]. A single supine view of the abdomen may be diagnostic in many cases, particularly in follow-up, while minimizing radiation exposure to both the chest and abdomen [47]. A prone cross-table lateral view of the rectum can be helpful in the evaluation when there is concern for distal colonic obstruction in a neonate.

a. The supine radiograph is obtained in the AP projection and should include the area from the ischial tuberosities inferiorly to the upper abdomen, including the diaphragm. Both flanks should be included. The film or image receptor is centered at the level of the iliac crest with the central ray perpendicular to it. Every attempt should be made to perform the examination on 1 image, particularly in children, with the inferior collimation ending at the symphysis, excluding the upper femurs and the male gonads. In large patients, more than 1 radiograph may be needed to encompass the entire abdomen.

b. The upright, decubitus, or cross-table lateral projection is obtained with the x-ray beam parallel to the floor and perpendicular to the film or image receptor to optimize the visualization of small amounts of pneumoperitoneum and to assess the distribution and configuration of air-fluid levels. Most institutions prefer the upright projection for adults and older children when the patient’s condition permits. The lateral decubitus position is also used when the patient cannot be placed upright; this position is especially useful for neonates, infants, and young children who are unable to stand or cooperate. This position is also most useful to evaluate the right lower quadrant, and it has been found to be particularly helpful in pediatric patients suspected of having intussusception [48]. The left lateral decubitus position is preferred to the right lateral decubitus position, as pneumoperitoneum is more readily detected adjacent to the liver. When possible, the patient should be placed in the upright or decubitus position for at least 5 minutes before exposing the radiograph to allow free air to accumulate in the elevated part of the peritoneal cavity. Obtaining an upright chest radiograph after the patient has been placed in the left lateral decubitus position for several minutes may enhance detection of a small pneumoperitoneum [49].

i. The upright radiograph may be obtained in the AP or PA projection. The film or image receptor is centered 5 cm (2 in) above the iliac crest in the adult patient. The AP projection will provide better visualization of the kidneys, but the PA projection will reduce gonadal dose. The most superior part of the diaphragm must be included on the upright view, and in larger patients a second image, centered lower, may be needed to encompass the entire abdomen.

ii. For the left lateral decubitus view, the most superior part of the right side of the abdomen must be included on the radiograph, and it should include the area from the right hemidiaphragm to the pelvis, with the center of the film or receptor at or above the iliac crest. If the patient cannot be placed on the left side, the right lateral decubitus position may be used as an alternative; in such cases, the most superior part of the left side of the abdomen must be demonstrated, including the hemidiaphragm.

iii. The cross-table lateral projection is seldom used for adults and older children, except for critically ill patients when an upright or decubitus view cannot be obtained. However, for neonates, many institutions use this projection rather than a decubitus view as it may have an increased sensitivity for detecting free air in this patient population and does not require repositioning the patient.

c. When abdominal radiography is performed for urinary tract calculi, an upright projection is typically not obtained. Occasionally, oblique or other views may be appropriate [50]. However, CT or ultrasound may be considered in these cases. When performed for localization of pancreatic duct stone burden pre-lithotripsy, oblique views are added to the supine view.
d. Additional projections of the entire abdomen or coned views of a selected portion of the abdomen to provide improved detail in an area of concern may be used occasionally to supplement the standard examination. Oblique and lateral views may be helpful to localize foreign bodies or calcifications and to assess for calcification and aneurysms of the abdominal aorta. In infants and children, prone views may be used to demonstrate the distribution of bowel gas and evaluate conditions such as anorectal malformations or intussusception.

e. In selected patients, a limited examination not including the entire abdomen or consisting of an upright radiograph only may be acceptable. Examples include checking the position of medical devices, following up known localized abnormalities, and evaluating for pneumoperitoneum following a medical or surgical procedure.

C. Radiographic Quality Control

1. A qualified physician or technologist should review all radiographs for positioning and diagnostic quality before the patient is released. Repeat radiographs should be performed when necessary for diagnostic quality.

2. All radiographic studies should be permanently labeled with patient identification and the date of the examination. The time of the examination should be included if relevant, especially when more than 1 examination is performed on the same date. The right or left side of the patient should be indicated on the radiograph.

V. DOCUMENTATION

An official interpretation (final report) of the examination should be included in the patient’s medical record. Whenever possible, new studies should be compared with prior abdominal examinations and/or other pertinent studies that may be available.

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [51].

VI. EQUIPMENT SPECIFICATIONS

See the ACR–SPR Practice Parameter for General Radiography [42].

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels).

Nationally developed guidelines, such as the ACR Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.

Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation
dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR technical standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

Equipment monitoring should be in accordance with the ACR-AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Radiographic Equipment.

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Body Imaging (Abdominal) of the ACR Commission on Body Imaging, Committee on Practice Parameters – General, Small and Rural Practice of the ACR Commission on General, Small, and Rural Practice, and the Committee on Practice Parameters - Pediatric Radiology of the ACR Commission on Pediatric Radiology, in collaboration with the SPR.

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR
Dean D. Maglinte, MD, FACR, Co-Chair
Matthew S. Pollack, MD, FACR, Co-Chair
Brian D. Coley, MD, FACR

SPR
Karen Blumberg, MD, FACR
Lena N. Naffaa, MD
Daniel J. Podberesky, MD

Committee on Body Imaging (Abdominal)
(ACR Committee responsible for sponsoring the draft through the process)

Ruedi F. Thoeni, MD, Chair
Mahmoud M. Al-Hawary, MD
Mark E. Baker, MD, FACR
Barry D. Daly, MD, MB, BCh
Isaac R. Francis, MD, FACR
Patrick Gonzales, MD
Richard M. Gore, MD, FACR
Dean D. Maglinte, MD, FACR
Frank H. Miller, MD, FCR
Donald G. Mitchell, MD, FCR
Eric M. Rubin, MD
Scott D. Stevens, MD, FCR
William E. Torres, MD, FCR

Committee on Practice Parameters – General, Small, and Rural Practice
(ACR Committee responsible for sponsoring the draft through the process)

Sayed Ali, MD, Chair
Marco Amendola, MD, FCR
Gory Ballester, MD
Lonnie J. Bargo, MD
Christopher M. Brennan, MD, PhD
Resmi A. Charalel, MD
Candice A. Johnstone, MD
Padmaja Jonnalagadda, MD
Pil S. Kang, MD
Jason B. Katzen, MD
Serena McClam Liebengood, MD
Gagandeep S. Mangat, MD
Tammam N. Nehme, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Beverley Newman, MB, BCh, BSc, FCR, Chair
Lorna P. Browne, MB, BCh
Timothy J. Carmody, MD, FCR
Brian D. Coley, MD, FCR
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn Ansley Fordham, MD, FCR
Kerri A. Highmore, MD
Sue C. Kaste, DO
Tal Laor, MD
Terry L. Levin, MD
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD

Lincoln L. Berland, MD, FCR, Chair, Commission on Body Imaging
Lawrence A. Liebscher, MD, FCR, Chair, Commission on General, Small and Rural Practice
Robert S. Pyatt, Jr., MD, FCR, Vice Chair, Commission on General, Small and Rural Practice
Marta Hernandez-Schulman, MD, FCR, Chair, Commission on Pediatric Radiology
Jacqueline A. Bello, MD, FCR, Chair, Commission on Quality and Safety
Matthew S. Pollack, MD, FCR, Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Joseph G. Cermigliaro, MD, FCR, Chair
Neil U. Lall, MD, Co-Chair
Sayed Ali, MD
Jacqueline A. Bello, MD, FCR
REFERENCES

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for This Practice Parameter
2001 (Resolution 32)
Revised 2006 (Resolution 48, 17, 35)
Amended 2009 (Resolution 11)
Revised 2011 (Resolution 52)
Amended 2014 (Resolution 39)
Revised 2016 (Resolution 2)