The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

2020 (Resolution 24)*

ACR–SAR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF COMPUTED TOMOGRAPHY (CT) ENTEROGRAPHY

PREAMBLE

These Practice Parameters are an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care\(^1\). For these reasons and those set forth below, the American College of Radiology cautions against the use of these Practice Parameters in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, an approach that differs from the Practice Parameters, standing alone, does not necessarily imply that the approach was below the standard of care\(^1\). To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the Practice Parameters when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the Practice Parameters. However, a practitioner who employs an approach substantially different from these Practice Parameters is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these Practice Parameters will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these Practice Parameters is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, 831 N.W.2d 826 (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR), Society for Pediatric Radiology (SPR), and the Society of Abdominal Radiology (SAR).

CT enterography (CTE) is an examination using neutral oral contrast agents (with density of <20-30 HU) and intravenous (IV) contrast medium, with multidetector CT (MDCT) in the evaluation of small-bowel diseases [1-20]. In most centers caring for patients with Crohn’s disease, CT and MR enterography (MRE) have become the standard of care and have supplanted traditional barium-based fluoroscopic techniques (small-bowel series and enteroclysis) [21] (see the ACR–SAR–SPR Practice Parameter for the Performance of Magnetic Resonance (MR) Enterography [22]).

II. INDICATIONS AND CONTRAINDICATIONS

Clinical indications and contraindications for CTE include, but are not limited to, the following:

A. Indications
 1. Known inflammatory bowel disease not in the perioperative period
 2. Suspected Crohn’s disease or other causes of small-bowel inflammation
 3. Suspected small-bowel bleeding (formally obscure gastrointestinal bleeding). This study should be performed if upper and lower endoscopy fail to identify bleeding source. Note: Suspected acute as well as small-bowel bleeding should be evaluated with multiphasic technique and not uniphasic CTE.
 4. Suspected small-bowel disease (eg, celiac disease)
 5. Chronic diarrhea and/or abdominal pain
 6. Suspected chronic mesenteric ischemia

B. Contraindications (most are relative) when Other Examinations may be more Efficacious
 1. Patients with a known, severe iodinated contrast media allergy who are able to undergo MRE
 2. Patients with chronic kidney disease whose estimated glomerular filtration rate (eGFR) is < 30 mL/min/1.73 m². In these patients, consider hydration or MRE.
 3. Patients who have had multiple CT examinations in their lifetime and in whom the examination is not considered urgent or emergent. In such cases, consider MRE, especially in younger patients with Crohn’s disease
 4. Patients in the postoperative period (within 2-3 weeks) in whom an abscess or anastomotic leak is considered more likely; this will require the use of a positive oral contrast agent, either orally and/or rectally if there is an anastomosis, rather than CTE. In the acute, emergency department setting, the choice of a conventional CT with positive or high attenuation oral contrast or a CTE should be based upon whether the patient is in the postoperative period or not. If the patient is not in the postoperative period and there is a history of Crohn’s disease, a CTE should be considered.
 5. In pediatric patients, the relative advantages and disadvantages of CTE and MRE should be considered. In particular, the potential need for sedation/anesthesia should be weighed cautiously.

Clinical Scenarios in which CTE may not be Efficacious

CTE is not efficacious without IV contrast. The issues related to the use of gadolinium-based and iodinated contrast media in patients with acute and chronic kidney disease have recently been addressed and significantly changed when compared with prior recommendations. It is beyond the scope of this practice parameter to address these issues. Any questions concerning the appropriate use of these contrast agents for CTE and MRE should be addressed in the ACR Manual on Contrast Media [23]. It documents the use of low and iso-osmolality iodinated contrast media in CTE in patients with stable renal function and an eGFR of > 30 mL/min/1.73 m². The risk of contrast-induced nephropathy is low or nonexistent, all other factors being equal. The use of group II gadolinium-based contrast agents in MRE in any patient with acute or chronic kidney disease is now considered to be safe.
Patients with inflammatory bowel disease who have had multiple prior CT examinations and are not acutely ill may be better evaluated with MRE rather than with CTE. This particularly applies in the pediatric population, for whom efforts to apply ALARA principles should be maintained. In the perioperative period, even in patients with Crohn’s disease, an anastomotic leak may not be identified when neutral oral contrast medium is used. Lastly, there is no evidence that CTE can detect the cause of incomplete, low-grade, or recurrent small-bowel obstructions, which are commonly due to adhesive disease. These patients are better evaluated with a standard, fluoroscopic small-bowel follow-through series [24].

In this patient cohort, an MRE without IV contrast may be preferred.

For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [25].

III. QUALIFICATIONS OF PERSONNEL

See the ACR Practice Parameter for Performing and Interpreting Diagnostic Computed Tomography (CT) [26].

IV. SPECIFICATIONS OF THE EXAMINATION

The written or electronic request for CT enterography should provide sufficient information to demonstrate the medical necessity of the examination and allow for the proper performance and interpretation of the examination.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). The provision of additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35 adopted in 2006 – revised in 2016, Resolution 12-b)

Oral Contrast Media for CTE

CTE requires some form of bowel distension to accurately assess the small bowel [18,19,27-29], including the interface between the wall and the lumen. Traditional positive contrast agents obscure this interface; therefore, oral agents currently used for CTE are much lower in attenuation, generally 0 - 30 HU, depending upon the agent, and are called neutral oral agents. Water, milk, lactulose, polyethylene glycol, methylcellulose, sorbitol, mannitol, a commercially available sugar alcohol beverage, and a commercially available 0.1% barium suspension are all currently in use as neutral oral contrast agents [11,30-38]. The 0.1% barium suspension has a density between 15 and 25 HU. Attenuation depends upon the location in the bowel and amount of water absorption. CTE neutral oral contrast agents retard absorption of water along the length of the small bowel, maintaining distension and allowing for bowel-wall assessment. Because water is absorbed over the length of the small bowel, use of specially designed oral contrast agents is preferred for CTE (see below for exceptions).

Oral Contrast Media Ingestion Regimens

CTE oral contrast ingestion protocols vary between institutions [11,30-38]. Regardless, oral contrast must be ingested over 30 - 60 minutes. CT image acquisition is generally begun after 45 to 70 minutes for patients with an intact gastrointestinal system and 30–45 minutes for patients with surgically altered intestinal anatomy. The volume of contrast ingested varies, but most adult protocols require the ingestion of 1,000 - 1,350 mL of contrast agent, and in pediatric patients, the volume varies and is prescribed according to patient weight, eg, 20 mL/kg, up to adult dose), and often supplemented at the end by water. The water is administered just before the scan acquisition in an attempt to distend the duodenum and jejunum. It is best for the patient to consistently ingest the oral contrast
material over the time period, rather than rapidly ingest each bottle of contrast. This method will facilitate consistent proximal-to-distal small-bowel distension. Ideally, the patients should be located in the radiology department while ingesting the contrast so that a technologist, nurse, or designated individual can directly observe the patients and identify those who are having trouble ingesting the agent, and provide encouragement. Patient compliance with enteric contrast drinking can be enhanced by contrast refrigeration or addition of sugar-free flavoring. Ileal distension appears to improve when the patient ingests the agent while sitting or supine, as opposed to in the right lateral decubitus position [37]. If the patient cannot ingest the oral contrast agent, an enteric tube can be placed for administration and removed prior to imaging. Alternatively, if the patient has ingested some contrast medium, the required balance can be completed with water. Some sites encourage patients to ingest a few sips of water between bottles of the commercially available 0.1% barium suspension, to aid patient compliance. If only water is used, imaging should be performed earlier (ie, 30 minutes after beginning drinking) as water is rapidly absorbed. If patients are unable to drink the prescribed volume of neutral oral contrast agent, the supervising physician should make the determination whether the patient should substitute water for the remaining volume of contrast or continue the study.

IV Contrast Enhancement for CTE

For CTE, IV contrast enhancement is essential for the assessment of bowel wall enhancement pattern, enhancing bowel wall lesions and intraluminal contrast extravasation, in the case of acute gastrointestinal bleeding. Scan timing relative to the start of iodinated contrast injection for CTE is somewhat variable. Schindera et al reported that the normal small-bowel wall appears to have the greatest level of enhancement during the enteric phase (approximately 40 seconds postinitiation of contrast injection) [39]. This investigation did not take into account the location of the small bowel when assessing bowel wall enhancement, which is relevant because the normal number of folds decreases from duodenum to ileum, and the duodenum enhances more than the jejunum and the jejunum more than the ileum [1]. Thus, some investigators believe that the ideal time to scan in patients with Crohn’s disease is at 50 seconds (or 14 seconds after peak abdominal aortic enhancement) after initiating contrast injection, although if the injection rate is limited by technical factors, timing should be delayed. Other investigators using timed MR scanning after an injection of contrast have shown that the maximal difference between normal and active inflammatory small-bowel Crohn’s disease occurs much later, even several minutes after contrast injection [40]. Furthermore, an investigation of CTE showed that the detection of active inflammatory small-bowel Crohn’s disease did not differ between scans obtained after 40 seconds and 70 seconds post contrast enhancement [41]. In most academic institutions, CTE obtained for assessment of Crohn’s disease is performed using a single phase of enhancement acquired between 50 and 70 seconds post contrast injection (ie, either the enteric or portal venous phase). Recently, a split-bolus technique has been investigated, yielding a greater contrast-to-noise ratio for active Crohn’s disease and improving disease detection [42].

In the evaluation of suspected small-bowel bleeding, suspected chronic mesenteric ischemia, and suspected small-bowel masses, multiphasic scanning is essential [7-10]. Some centers perform a low-dose precontrast evaluation to eliminate the confusion that high-attenuation, intraluminal objects, such as pills, may cause (any intraluminal high-attenuation object that does not change during multiple postcontrast phases must be considered as inert and not significant). Most perform an arterial phase examination, with scan timing based on bolus tracking techniques, with a region of interest placed over the aorta at the diaphragmatic hiatus. This is followed by an enteric phase examination at approximately 50 seconds post contrast injection as well as a more delayed portal venous phase for even longer, >70–80 seconds. Some centers only perform arterial and portal venous phase scans for these indications. If a dual-energy CT scanner is utilized, the unenhanced portion of the examination can be eliminated because virtual noncontrast images can be generated.

Scan Position and Range

Patients are scanned in the supine position through the abdomen and pelvis. Importantly, technologists should include the perineum in order to identify perianal fistulas and abscesses in patients with known or suspected Crohn’s disease.
Reconstruction Techniques for CTE

For reconstruction purposes, CTE created from MDCT data sets must be processed in orthogonal planes, typically axial and coronal. Some sites routinely reconstruct in the sagittal plane; some only when this plane provides additional information to a specific case, or for presurgical planning. Multiplanar reconstructions facilitate the identification of fistulae and sinus tracts. The sagittal plane is particularly helpful in identifying the origin of the celiac axis and superior mesenteric artery and assessing for stenosis or occlusion in patients with suspected acute or chronic mesenteric ischemia. In patients scanned for vascular disease, 3-D angiograms can be easily reconstructed with various techniques on modern workstations. Modern workstations can also allow for assessment of the scan data in unlimited planes. The combination of axial, coronal, and sagittal planes can be utilized and helpful in identifying fistulae, sinus tracts, and presurgical planning. Maximum intensity projection (MIP) images are helpful particularly in multiphasic gastrointestinal bleeding studies to quickly assess for sites of active extravasation or focal enhancing masses. In patients with Crohn’s disease, reconstructing 10-mm, coronal, thick MIP images facilitates the detection of chronic mesenteric vein occlusion.

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [43].

The 2018 SAR/American Gastroenterological Association (AGA)/SPR consensus document recommends that a templated, standardized reporting method be used for CTE in Crohn’s disease [44]. Others recommend this as well [18,19,45-47]. Systematic reporting using a template and standardized terms for the findings and conclusions will facilitate communication and allow for outcomes measures. Findings on CTE and MRE are increasingly important in directing both medical and surgical management [48-52]; therefore, consistency in reporting is critical. The report should specifically indicate that the abdomen and pelvis CT with oral and IV contrast was a CTE examination utilizing neutral oral contrast media. Additionally, every effort should be made to use the standardized terms for radiographic findings of Crohn’s disease as well as the accepted impressions summarizing those findings [44].

As an example, the report should address the following for patients with Crohn’s disease (for non-Crohn’s patients, the template can be adjusted to the specific disease process (eg, suspected small-bowel bleeding) :

- Presence, location, number, and length of disease segments (describe where wall thickening and abnormal enhancement are present)
- Presence of luminal narrowing without and with upstream dilation
- Presence of penetrating disease, including sinus tracts and fistulae
- Presence of inflammatory mass (or phlegmon, a term no longer recommended) and abscess
- Presence of ancillary findings: vasa recta distension, fibrofatty proliferation, perienteric edema, or inflammatory mass, gallstones, renal stones, mesenteric venous thrombosis, sacroiliitis, or avascular necrosis of hips

The impressions for CTE recommended by the SAR/AGA/SPR consensus are:

- Nonspecific small-bowel inflammation
- Active inflammatory small-bowel Crohn’s disease without luminal narrowing
- Active inflammatory small-bowel Crohn’s disease with luminal narrowing
- Crohn’s disease with no imaging signs of active inflammation
- Stricture with imaging findings of active inflammation
- Stricture without imaging findings of active inflammation
- Penetrating Crohn’s disease (often with luminal narrowing or stricture with imaging findings of active inflammation)
- Perianal Crohn’s disease
- Other complications of Crohn’s disease (eg, gallstones, nephrolithiasis, primary sclerosing cholangitis, or aseptic necrosis of femoral heads)
- Other important non-Crohn’s disease findings
For specific issues regarding CT quality control, see the ACR Practice Parameter for Performing and Interpreting Diagnostic Computed Tomography (CT) [26].

VI. EQUIPMENT SPECIFICATIONS

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Computed Tomography (CT) Equipment [53].

A. Performance Parameters

To achieve acceptable clinical CT scans of the small bowel, a CT scanner should meet or exceed the following capabilities [18]:

1. MDCT with detector row ≥16
2. Helical or volume acquisition with appropriate adaptation of pitch so that images of the abdomen and pelvis are acquired in a single breath-hold
3. Scan rotation time: ≤1 sec
4. Minimum slice thickness: <2 mm; maximum slice thickness: 3–4 mm
5. Limiting spatial resolution: ≥8 lp/cm for ≥32 cm display field of view (DFOV) and ≥10 lp/cm for <24 cm DFOV
6. Creation of multiplanar images (minimum axial and coronal; sagittal images added for disease process)

With the proliferation of dual-energy CT scanners (fast-switch kVp, dual-source or dual-layer, detector based), many sites are beginning to scan patients to create monoenergetic low keV (generally 50 keV) and iodine-map images. Some have found that these scanners more easily and accurately detect disease yet with no increased radiation exposure and with the ability to decrease the volume of iodinated contrast media administered [54,55]. An alternate solution is to utilize low kVp to accentuate areas of abnormal enhancement. This approach is especially useful in smaller patients, whereas in larger patients this may result in greater noise.

B. Appropriate emergency equipment and medications must be immediately available to treat adverse reactions associated with administered medications. The equipment and medications should be monitored for inventory and drug expiration dates on a regular basis. The equipment, medications, and other emergency support must also be appropriate for the range of ages and sizes in the patient population.

C. A soft-copy workstation (PACS station) review capability should be available to radiologist and clinicians. CD or DVD capability also should be available. For additional information on image sharing and security, see the ACR–AAPM–SIIM Technical Standard for Electronic Practice of Medical Imaging [56] and the ACR–AAPM–SIIM Practice Parameter for Electronic Medical Information Privacy and Security [57].

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels) [58,59].

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.
Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used. Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR technical standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17, adopted in 2006 – revised in 2009, 2013, Resolution 52)

Radiation Exposure Issues with CTE

CT contributes the largest, single source of man-made ionizing radiation to the American public, and this contribution has substantially increased since 2009 [58]. This is of special concern in patients with a chronic illness such as Crohn’s disease, which often starts in childhood or adolescence, and who are more likely to undergo frequent imaging examinations.

Several studies have shown that some patients with Crohn’s disease receive large cumulative exposures (over 100 mSv) over the course of their disease and often are examined with CT 2–3 times a year [59-65]. Given evidence that radiation exposure from CT scans in children may result in an increased risk of brain tumors and leukemia [66,67], CT dose optimization remains at the forefront of quality efforts in radiology, especially in pediatric patients. Notwithstanding these observations, however, the benefits of CT far outweigh potential risks in symptomatic patients with Crohn’s disease. Two recent studies have shown that CT in emergency department patients with Crohn’s disease results in substantial patient management changes in a large portion of these patients (particularly in patients with bowel obstruction and abscesses) [68,69]. Another study showed that about 50% of outpatients with known or suspected Crohn’s disease had their management plans changed as a result of CTE [49]. The medical justification for CTE depends upon the perceived benefit versus risk for any particular patient as well as the availability and clinical feasibility of alternative imaging modalities, such as MRE.

In the last decade, there have been many investigations comparing full or standard exposure CTE with lower exposure CTE utilizing alterations in kVp and mAs appropriate to body habitus, weight, and body mass index (BMI), and altering the scan pitch. These changes can lead to an increase in the image noise that can be offset with newer image reconstruction algorithms, generally called iterative reconstruction, applied to the initial lower-exposure images to reduce noise [70-97]. Reductions from CT dose index (CTDIvol) between 15–20 mGy to < 10 mGy, and even below 5 mGy, have been achieved without apparent loss of efficacy. However, these lower-exposure techniques reconstructed with new noise-reducing algorithms often result in images that are unfamiliar to some radiologists. In the research setting, these examinations are often rated by readers as suboptimal or nondiagnostic [70,82]. What is not known is how these images are interpreted in day-to-day practice and whether these lower exposure examinations result in more equivocal interpretations.

In this evolving field, when CTE is performed, every effort should be made to reduce the radiation exposure as low as reasonably achievable (ALARA) and still achieve a diagnostic examination.

For radiation exposure reduction in patients with Crohn’s disease, a very appropriate alternative to CTE is MRE. Comparisons of the two techniques show equivalent efficacy in detecting both uncomplicated and complicated Crohn’s disease [44]. The advantage of CT is the rapid scan acquisition time and superior spatial resolution. The
3T magnet technology approaches the spatial resolution of CT, but MRE can be more challenging to perform because it is more affected by patient motion given the longer acquisition times. This is especially an issue for imaging young children and first-time MRI studies on patients. MRE, especially on a 3T, is more susceptible to bowel peristalsis, a problem that can be improved by the use of antiperistaltic agents such as glucagon, hyoscymine sulfate, or scopolamine butyl bromide, which is not available in the United States. The challenges of MRE are offset by its superior signal-to-noise ratio and excellent tissue characterization when compared with CTE and avoidance of ionizing radiation. Furthermore, multiple pulse sequences can be performed. These advantages make MRE a feasible and viable alternative to CTE.

In many institutions, adult patients over the age of 18 years with known or suspected Crohn’s disease are imaged with CTE at presentation. This initial examination offers excellent spatial resolution, is unaffected by motion-related artifacts, and provides a baseline study. If subsequent follow-up examinations are indicated, a CTE can be substituted with MRE (see the ACR–SAR–SPR Practice Parameter for the Performance of Magnetic Resonance (MR) Enterography [22]), depending upon the clinical presentation and scanner availability. Acutely ill patients require rapid imaging in order to exclude an abscess. Thus, CTE is more appropriate in this population. Postoperative patients are best evaluated with CT using positive oral contrast agents in order to exclude an anastomotic leak (oral and/or rectal, positive contrast administration, depending upon the site of the anastomosis).

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading ACR Position Statement on Quality Control and Improvement, Safety, Infection Control and Patient Education on the ACR website (https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Quality-Control-and-Improvement).

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Body Imaging (Abdominal) of the Commission on Body Imaging and by the Committee on Practice Parameters – Pediatric Radiology of the Commission on Pediatric Radiology, in collaboration with the SAR and the SPR.

Collaborative Committee
Members represent their societies in the initial and final revision of this parameter.

ACR
- Mark E. Baker, MD, FACR, Chair
- Lincoln L. Berland, MD, FACR
- Kerri Highmore, MD
- Alec J. Megibow, MD, MPH, FACR
- Ruedi F. Thoeni, MD

SAR
- Joel G. Fletcher, MD, FSAR
- Joel Platt, MD

SPR
- Jonathan R. Dillman, MD, MSc
- Daniel J. Podberesky, MD

Committee on Practice Parameters - Body Imaging (Abdominal)
(ACR Committee responsible for sponsoring the draft through the process)

- Benjamin M. Yeh, MD, Chair
- Mahmoud M. Al-Hawary, MD
- Mark E. Baker, MD, FACR
- Olga R. Brook, MD
- Lindsay Busby MD, MPH

- Diego Martin, MD, PhD
- Alec Megibow, MD, MPH, FACR
- Achille Mileto, MD
- Erick Remer, MD, FACR
- Kumar Sundrasegaran, MD
REFERENCE

*Practice Parameters and Technical Standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For Practice Parameters and Technical Standards published before 1999, the effective date was January 1 following the year in which the parameter or standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
2015 (Resolution 18)
Revised 2020 (Resolution 24)