ACR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF
CONTRAST ESOPHAGRAMS AND UPPER GASTROINTESTINAL
EXAMINATIONS IN INFANTS AND CHILDREN

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR).

Examinations of the esophagus and the upper gastrointestinal (GI) tract by single-contrast or double-contrast technique are proven and useful procedures for evaluation of the esophagus, stomach, and duodenum. The goal of radiologic examination is to establish the presence or absence, nature, and extent of disease with a diagnostic-quality study using the minimum radiation dose necessary. The following standards are for performance of single-contrast and double-contrast (biphasic) esophagrams and single-contrast and double-contrast (biphasic) upper GI examinations in infants and children. Typically, single-contrast studies are used in infants and children, but occasionally double-contrast studies are indicated.

II. INDICATIONS AND CONTRAINDICATIONS

A. Indications for Esophagram

1. Pertinent history and symptoms serving as indications for an esophagram include, but are not limited to, the following:
 a. Dysphagia
 b. Odynophagia
 c. Noncardiac chest pain
 d. Recurrent pneumonia or chronic tracheobronchial inflammation

2. The esophagram is helpful in the diagnosis and evaluation of many conditions, including, but not limited to, the following:
 a. Great-vessel anomalies
 b. Tracheoesophageal fistula
 c. Extrinsic compression
 d. Postsurgical evaluation
 e. Esophageal obstruction
 f. Strictures
 g. Suspected or known motility disorders
 h. Esophagitis
 i. Foreign bodies
 j. Unexplained pneumomediastinum or suspected esophageal perforation
 k. Neoplasm
 l. Varices

B. Indications for Upper GI Examinations

1. Pertinent history and symptoms serving as indications for an upper GI examination include, but are not limited to, the following:
 a. Abdominal pain
 b. Epigastric distress or discomfort
 c. Weight loss or failure to thrive
 d. Congenital syndromes or anomalies associated with intestinal malrotation
 e. Chronic or recurrent respiratory disease, including cough
f. Acute life-threatening event. The term “ALTE” infers a respiratory arrest or near arrest that has a differential diagnosis (apnea, child abuse, aspiration, etc).

g. Preoperative evaluation

h. Postoperative evaluation

i. Abdominal masses

k. Vomiting

l. Signs and/or symptoms of upper GI bleeding

2. The upper GI examination is helpful in diagnosing and evaluating many conditions including but not limited to, the following:

 a. Intestinal malrotation anomalies
 b. Hiatal hernia
 c. Suspected or known gastritis or duodenitis
 d. Pyloric stenosis when ultrasound is not available
 e. Gastric outlet or upper intestinal obstruction
 f. Peptic ulcer disease
 g. Duodenal laceration or intramural hematoma
 h. Additional hernias (diaphragmatic, paraesophageal), including recurrent diaphragmatic hernia
 i. Neoplasms

In reviewing indications for a contrast study of the stomach and duodenum, alternative imaging and nonimaging methods of examining these structures should be considered as might be relevant to the individual case.

For the pregnant or potentially pregnant patient, see the ACR–SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [1].

III. QUALIFICATIONS OF PERSONNEL

For qualifications of physicians, medical physicists, radiologist assistants, and radiologic technologists, see the ACR–SPR Practice Parameter for General Radiography [2].

Additionally, physicians performing this procedure should have documented formal training in the performance and interpretation of GI fluoroscopy as part of an accredited residency training program.

Qualifications of technologists performing GI radiography should be in accordance with the current ACR policy statement on fluoroscopy2 and with operating procedures or manuals at the imaging facility. Fluoroscopy technologists assisting in esophagrams or upper GI examinations should be thoroughly trained in GI radiography.

IV. SPECIFICATIONS OF THE EXAMINATION

The written or electronic request for a pediatric contrast esophagram or upper gastrointestinal examination should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

2 The American College of Radiology approves of the practice of certified and/or licensed radiologic technologists performing fluoroscopy in a facility or department as a positioning or localizing procedure only, and then only if monitored by a supervising physician who is personally and immediately available*. There must be a written policy or process for the positioning or localizing procedure that is approved by the medical director of the facility or department/service and that includes written authority or policies and processes for designating radiologic technologists who may perform such procedures. (ACR Resolution 26, 1987 – revised in 2007, Resolution 12-m)

*For the purposes of this guideline, “personally and immediately available” is defined in manner of the “personal supervision” provision of CMS—a physician must be in attendance in the room during the performance of the procedure. Program Memorandum Carriers, DHHS, HCFA, Transmittal B-01-28, April 19, 2001.
Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006)

A. Patient Selection

For a routine esophagram, the patient should not have ingested anything by mouth for a minimum of 2 hours. For upper GI examination, oral feeding should be withheld for a time period appropriate for the patient’s age: approximately 2 to 3 hours for neonates and young infants and 4 hours for older infants and children. Adolescents should fast for at least 6 to 8 hours. Emergency examinations may be performed with shorter fasting times as determined by the radiologist in concert with the referring physician.

B. Examination Preliminaries

An appropriate medical history should be available, including results of laboratory tests and imaging, endoscopic, and surgical procedures as applicable.

Use of a child life specialist and/or parent may be helpful in enabling young patients to cooperate for the examination. Immobilization devices may be helpful in patient positioning. These devices may help limit repeat radiographic exposures and unnecessary radiation dose to patients, parents, technologists, and other personnel.

A preliminary radiographic or fluoroscopic “scout” image of the chest and/or abdomen may be useful, depending on the specific clinical concern. Image-hold or image-grab images should NOT be used as scout images since they are of much lower resolution, and subtle findings such as calcifications, small amounts of free air or pneumatosis, or bony abnormalities, etc, may be missed. Routine scout imaging in the outpatient setting, unless specifically requested by the ordering physician, can be replaced by a brief, initial fluoroscopic assessment. A scout image should be obtained with inpatients if there has been no recent radiograph. Preliminary images should be assessed for calcifications, skeletal abnormalities, anomalies of situs, bowel gas pattern, pneumoperitoneum, evidence of prior surgery, catheters, and monitoring devices. A scout image of the chest should be assessed for pneumomediastinum and pleural effusion, especially in cases where an esophagram is performed. A horizontal beam image should be performed if the patient has an underlying condition that might predispose to gastrointestinal (GI) tract perforation. In the absence of preceding abdominal imaging, scout images are especially helpful in the workup of neonatal bowel obstruction, since they may influence the choice of initial fluoroscopic study and GI contrast (eg, upper GI for proximal bowel obstruction and contrast enema for distal small bowel or colonic obstruction).

C. Examination Technique

The examination procedure should be tailored by the radiologist to the individual patient as warranted by clinical circumstances and the condition of the patient, to produce a diagnostic-quality examination. Preliminary findings during the examination may indicate a need to alter technique in subsequent portions of the examination.

The contrast medium should be delivered in a manner that is appropriate for the patient’s age. Flavoring agents may be added in older patients. Neonates and infants may be fed contrast from a baby bottle with a nipple. Alternatively, a device consisting of a feeding tube or orogastric tube passed through a nipple is sometimes used to deliver the contrast into the mouth [3]; this should be done under careful fluoroscopic control to prevent
aspiration. Older infants able to bottle-feed themselves may be allowed to do so. The contrast may be given by straw or taken directly from a cup by an older child. A nasogastric tube, gastrostomy tube, or jejunostomy tube may be used as appropriate. In neonates or young infants with a history of bilious emesis, a nasogastric tube can be placed with tip in the distal stomach to empty the stomach so that a controlled upper GI with a small amount of contrast and air can effectively evaluate for malrotation and/or volvulus, using the least amount of contrast and fluoroscopic time.

The amount and type of contrast material given are determined by the child’s age and the indications for the study. Barium is the preferred contrast medium for most studies [4]. Nonionic iodinated contrast media may be given to assess the integrity of an esophageal anastomosis, diagnose duodenal obstruction or perforation, or diagnose intestinal malrotation in selected critically ill patients. Iso-osmolar or near iso-osmolar solutions are important in cases in which there is risk of aspiration [5]. Iso-osmolar contrast media are particularly important in critically ill premature neonates and infants to avoid serum electrolyte shifts. Diatrizoic acid, a very highly osmotically active water-soluble contrast agent, should not be administered orally in neonates and young infants because this patient population has a higher risk of gastroesophageal reflux and aspiration, and aspirated hyperosmolar contrast may result in pulmonary edema and a severe chemical pneumonitis.

Sufficient still images and/or fluoroscopic image clips should be recorded to adequately evaluate normal anatomy and characterize any abnormalities present. In general, this includes at least anteroposterior and lateral projections of all anatomy, and often oblique images, for adequate assessment. The use of fluoroscopic image store/last image-hold can markedly reduce patient dose compared to spot images. Fluoroscopic stored images do not have the same resolution as spot images but may be adequate for documentation depending upon the study circumstances.

1. Single-contrast esophagram
 a. The anatomic structure and motility of the entire esophagus should be evaluated fluoroscopically. Appropriate images should be obtained to document normal and abnormal findings. The examination is optimally performed in the lateral and anteroposterior projections, with visualization of the nasopharynx to the gastric fundus [6].
 b. Esophagrams performed in infants with suspected tracheoesophageal fistula are optimally performed in a controlled manner, with full distension of the esophagus, which can be achieved with normal drinking in patients who drink contrast readily. In patients who do not drink sufficient contrast to distend the esophagus, the contrast can be administered in small amounts initially through a small feeding tube placed in the upper esophagus near the thoracic inlet, with the infant in a right anterior oblique or lateral position. This requires careful fluoroscopic monitoring of the contrast as it exits the tube to prevent aspiration. If no fistula is identified on the early images, the study may be completed with standard oral administration of contrast. Fluoroscopic observation from hypopharynx to carina in the lateral view throughout contrast instillation usually will allow differentiation of contrast in the trachea due to aspiration versus a fistula.
 c. Imaging of the esophagus should include an assessment of swallowing in the lateral view, especially if the patient has symptoms suggesting swallowing dysfunction such as coughing and choking and/or gagging during feeding. This should include imaging from the base of the tongue through the upper esophageal sphincter. Modified barium swallow is a more detailed evaluation of the oral, pharyngeal, and upper esophageal phases of swallowing with variable consistency materials, usually performed in conjunction with a speech pathologist or occupational therapist. Please refer to the ACR Practice Parameter for the Performance of the Modified Barium Swallow [7] for additional information.
2. Double-contrast (biphasic) esophagram

Double-contrast esophagrams are seldom performed in pediatric patients, but they may help to evaluate mucosal integrity in adolescents. (See the ACR Practice Parameter for the Performance of Esophagrams and Upper Gastrointestinal Examinations in Adults [8], section IV.C.)

3. Single-contrast upper GI examination
 a. Fluoroscopic assessment of swallowing and the anatomic structure and motility of the entire esophagus, stomach, and duodenum should be performed, and appropriate images should be obtained to document normal and abnormal findings. Suggested images include frontal and lateral views of the barium-distended esophagus, stomach, and duodenum and images of the partially filled esophagus. Initial passage of contrast through the duodenum should be observed directly with fluoroscopy to confirm the position of the duodenojejunal junction (DJJ) [9]. This can be documented with serial multiple fluorocapture images or fluoroscopy video capture, where available [10]. On the first upper GI examination in an infant or child, the position of the DJJ should be documented on both frontal and lateral positions to diagnose or exclude malrotation [9,11]. The lateral view is important to assure the retroperitoneal position of the normally rotated duodenum and the normal height of the DJJ at the level of the duodenal bulb; additionally, the frontal view assures the normal position of the DJJ, at or to the left of the left pedicle of the vertebral bodies, and at a height approximately at the level of the duodenal bulb [12-14].
 b. Images of gastroesophageal reflux should be recorded by last image-hold if reflux occurs during the examination. However, since reflux is a physiologic phenomenon and more sensitive tests exist, neither provocation of reflux nor prolonged fluoroscopy monitoring for detection is recommended [15].
 c. A final image documenting gastric emptying and the progress of contrast through small-bowel loops may be obtained at the conclusion of the examination.

4. Double-contrast (biphasic) upper GI examination

Double contrast upper GI examinations are seldom performed in pediatric patients, but they may help to evaluate mucosal integrity in adolescents. (See the ACR Practice Parameter for the Performance of Esophagrams and Upper Gastrointestinal Examinations in Adults [8], section IV.C.)

5. Quality control indicators

The following quality control indicators should be applied to all esophagram and upper GI examinations:
 a. When examinations are completed, patients should be held in the fluoroscopic area until the physician has reviewed the images.
 b. An attempt should be made to resolve questionable radiologic findings before the patient leaves. Repeat fluoroscopy should be performed as necessary.
 c. Correlation of radiologic, endoscopic, surgical, and pathologic findings is valuable for quality improvement, whenever feasible.

V. DOCUMENTATION

An official interpretation (final report) of the examination should be included in the patient’s medical record.

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [16].
VI. EQUIPMENT SPECIFICATIONS

Examinations must be performed with fluoroscopic and radiographic equipment meeting all applicable federal, state, and local radiation standards. Fluoroscopy units with settings for pediatric technique are recommended. If possible, a pulsed fluoroscopic technique and equipment should be used to reduce the radiation exposure. The equipment should provide diagnostic fluoroscopic image quality and recording capability (radiographs, video, or digital). The equipment should be capable of producing kilovoltage greater than 100 kVp. Equipment necessary to compress and isolate accessible regions of the small bowel should be readily available. Digital equipment with fluorohold and/or fluorocapture capability is desirable.

Facilities should have the ability to deliver supplemental oxygen to suction the oral cavity and the upper respiratory tract, and to respond to life-threatening emergencies that may accompany aspiration, allergic reaction to contrast agents, or reflux.

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels) [http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf].

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.

Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR Technical Standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).
VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (http://www.acr.org/guidelines).

The lowest possible radiation dose consistent with acceptable diagnostic image quality should be used. Radiation doses should be determined periodically based on a reasonable sample of pediatric examinations. Technical factors should be appropriate for the size and the age of the child and should be determined with consideration of parameters such as characteristics of the imaging system, organs in the radiation field, lead shielding, etc. Guidelines concerning effective pediatric technical factors are published in the radiologic literature and at websites such as www.imagegently.org.

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (http://www.acr.org/guidelines) by the Committee on Practice Parameters – Pediatric Radiology of the Commission on Pediatric Radiology, in collaboration with the SPR.

Collaborative Committee
Members represent their societies in the initial and final revision of this practice parameter.

ACR
Brian D. Coley, MD, FACR, Chair
David A. Bloom, MD, FACR
Lynn A. Fordham, MD, FACR

SPR
Karen Blumberg, MD, FACR
Steven Jay Kraus MD, MS
Martha M. Munden, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Eric N. Faerber, MD, FACR, Chair
Richard M. Benator, MD, FACR
Lorna P. Browne, MB, BCh
Timothy J. Carmody, MD
Brian D. Coley, MD, FACR
Lee K. Collins, MD
Monica S. Epelman, MD
Lynn A. Fordham, MD, FACR
Kerri A. Highmore, MD
Tal Laor, MD
Marguerite T. Parisi, MD, MS
Sumit Pruthi, MBBS
Nancy K. Rollins, MD
Pallavi Sagar, MD
Manrita K. Sidhu, MD
NOT FOR PUBLICATION, QUOTATION, OR CITATION

Marta Hernanz-Schulman, MD, FACR, Chair, Commission on Pediatric Radiology
Debra L. Monticciolo, MD, FACR, Chair, Commission on Quality and Safety
Jacqueline Anne Bello, MD, FACR, Vice-Chair, Commission on Quality and Safety
Julie K. Timins, MD, FACR, Chair, Committee on Practice Parameters and Technical Standards
Matthew S. Pollack, MD, FACR, Vice Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee
Eric J. Stern, MD, Chair
Richard B. Gunderman, MD, PhD, FACR, Co-Chair
Kimberly E. Applegate, MD, MS, FACR
David A. Bloom, MD, FACR
Karen Blumberg, MD, FACR
Christopher I. Cassady, MD
Brian D. Coley, MD, FACR
Eric N. Faerber, MD, FACR
Lynn A. Fordham, MD, FACR
Marta Hernanz-Schulman, MD, FACR
William T. Herrington, MD, FACR
Steven J. Kraus, MD, MS
Paul A. Larson, MD, FACR
Debra L. Monticciolo, MD, FACR
Martha M. Munden, MD
Matthew S. Pollack, MD, FACR
Julie K. Timins, MD, FACR

REFERENCES

Parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter

1997 (Resolution 25)
Revised 2001 (Resolution 29)
Revised 2006 (Resolution 43, 17, 34, 35)
Amended 2007 (Resolution 12m)
Revised 2010 (Resolution 42)
Amended 2014 (Resolution 39)
Revised 2015 (Resolution 36)