The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2019 (Resolution 32)*

ACR–AIUM–SPR–SRUPRACTICE PARAMETER FOR THE PERFORMANCE OF DUPLEX SONOGRAPHY OF NATIVE RENAL VESSELS

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, 831 N.W.2d 826 (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

The clinical aspects contained in specific sections of this practice parameter (Introduction, Indications, Specifications of the Examination, and Equipment Specifications) were revised collaboratively by the American College of Radiology (ACR), the American Institute of Ultrasound in Medicine (AIUM), the Society for Pediatric Radiology (SPR), and the Society of Radiologists in Ultrasound (SRU). Recommendations for Qualifications and Responsibilities of Personnel, Written Request for the Examination, Documentation, and Quality Control and Improvement, Safety, Infection Control, and Patient Education vary among the organizations and are addressed by each separately.

Ultrasound using grayscale imaging, color Doppler imaging, and spectral Doppler analysis is a proven and useful procedure for evaluating the renovascular system. Occasionally, an additional and/or specialized examination may be necessary. Although it is not possible to detect every abnormality, adherence to the following practice parameters will maximize the probability of detecting most renovascular abnormalities.

II. INDICATIONS/CONTRAINDICATIONS

Indications for renal duplex sonography include, but are not limited to:

1. Evaluation of patients with hypertension when there is a strong suspicion of renovascular hypertension (for example, uncontrolled hypertension despite optimal medical therapy, hypertension with progressive decline in renal function, progressive decline in renal function associated with angiotensin-converting enzyme (ACE) inhibition therapy, abrupt onset of hypertension) [1,2]
2. Follow-up of patients with known renovascular disease who have undergone renal artery stent placement, angioplasty or surgical bypass, or who have a known unilateral stenosis with concern for a stenosis in the contralateral kidney
3. Evaluation of an abdominal or flank bruit
4. Evaluation of a suspected vascular abnormality, such as an aneurysm, pseudoaneurysm, arteriovenous malformation, fistula, or following treatment of any of the above
5. Evaluation of vascular causes of renal insufficiency
6. Evaluation of renal perfusion in patients with known aortic dissection, trauma, or other abnormalities or conditions that may compromise renal blood flow
7. Evaluation of discrepant renal size
8. Concern for aortic or renal artery thrombosis in infants who have or have had an aortic catheter, such as an umbilical arterial catheter
9. Evaluation for congenital or syndromic causes of renovascular hypertension
10. Evaluation for renal vein thrombosis
11. Evaluation of the renal vein for renal tumor extension and differentiation of renal vein tumor thrombus from bland thrombus
12. Evaluation of the renal vein in patients suspected of Nutcracker syndrome

There are no absolute contraindications to performing this examination.

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

Core Privileging: This procedure is considered part of or amendable to image-guided core privileging.

See the ACR–SPR–SRU Practice Parameter for Performing and Interpreting Diagnostic Ultrasound Examinations [3].

IV. WRITTEN REQUEST FOR THE EXAMINATION

The written or electronic request for renal duplex sonography should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.
Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006 – revised in 2016, Resolution 12-b)

V. SPECIFICATIONS OF THE EXAMINATION

The study is generally performed for both kidneys. If not, the report should state the reason for a unilateral study (eg, evaluation of renal stent, known solitary kidney).

Obtaining the following grayscale images and Doppler evaluation is recommended when possible:

A. Renal Arteries

The study consists of grayscale imaging of the kidneys and limited grayscale views of the aorta with color and spectral Doppler of the intrarenal and extrarenal vessels and suprarenal aorta.

1. Grayscale Imaging

 The longest renal length should be measured and reported. In patients who have not had recent cross-sectional imaging of the kidneys, a complete renal ultrasound examination may be considered. See the ACR–AIUM–SPR–SRU Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen and/or Retroperitoneum [4]. Longitudinal and transverse views of the aorta should be obtained at the level of the kidneys and above.

2. Color and Spectral Doppler Evaluation

 Analysis of main renal artery and intrarenal arterial waveforms should be performed to evaluate for renal artery stenosis.

 Careful attention to technique is important to ensure accurate results, including selecting a transducer that is appropriate for the patient’s body habitus, optimizing color Doppler parameters, using an appropriate spectral Doppler sample volume, optimizing the velocity scale for the size of the waveform to avoid aliasing (this may require adjusting the scale (pulse repetition frequency), baseline, or frequency); selecting a lower frequency transducer; and using the lowest feasible angle of insonation. Angle correction is essential for determining blood flow velocity. The angle between the direction of flowing blood and the ultrasound beam should not exceed 60°.

 a. Main renal artery and aorta evaluation

 The entire main renal artery should be scanned along its long axis using optimized color Doppler parameters. Occasionally, power Doppler or grayscale imaging may be necessary to localize a portion of the artery. Inability to visualize a specific part (eg, the origin) of the entire main renal artery should be reported.

 Spectral Doppler waveforms should be obtained along the length of the main renal artery from the origin to the hilum at the lowest feasible angle of insonation.

 At a minimum, the highest peak systolic velocities should be recorded at the origin/proximal, mid, and hilar segments of the main renal artery [5-22]. Peak systolic velocity should also be recorded at any site
of color aliasing, narrowing, or suspected stenosis. If there is a significant stenosis, additional Doppler waveforms should be recorded within the stenosis and distal to the stenosis. In small children/infants, one measurement of peak systolic velocity in the main renal artery is acceptable [21].

An effort should also be made to search for accessory/duplicated renal arteries [21,23,24]. When visualized, peak systolic velocities should be recorded as described above.

An appropriate angle-corrected spectral Doppler waveform from the abdominal aorta at or slightly cephalic to the level of the origins of the renal arteries should be recorded. Aortic peak systolic velocity is used to calculate the ratio of the peak systolic velocity in the renal artery to the aorta (RAR).

Renal artery stent evaluation should include recording of peak systolic velocities in the proximal renal artery (if possible), within the stent, and distal to the stent [25].

In infants who have developed aortic thrombus after catheterization, the relationship of the clot to the renal artery orifices and flow around the thrombus should be documented. If the thrombus is located near a renal artery orifice, waveforms should be obtained in the main and intraparenchymal renal arteries to assess renal perfusion.

b. Intrarenal evaluation

Spectral Doppler waveforms should be recorded from segmental or interlobar arteries in the upper and lower poles and in the interpolar region (mid-portion) of each kidney. It is important to use a fast sweep speed and optimize the velocity scale to ensure accurate and reproducible measurements. If acceleration index measurements are used in assessment, angle correction is needed; the angle of insonation should be as low as possible, usually 30° or less.

Intrarenal analysis consists of quantitative and/or qualitative evaluation of the Doppler waveforms. Quantitative evaluation may include acceleration times, acceleration indices [26,27], or resistive indices [28-30]. For qualitative analysis, the morphology of the waveform should be assessed for a normal sharp systolic upstroke or abnormal tardus parvus changes [22,24,26,27]. Particularly, in children, because of motion, it may be important to document more than one spectral Doppler interrogation of a region to ensure optimal interpretation.

3. Contrast-enhanced ultrasound (CEUS)

The use of microbubble ultrasound contrast agents may be helpful in identification of the main renal artery(ies) and branches and in detection of duplicated or accessory renal arteries. Note: This would be an off-label use of CEUS based upon current FDA approval status.

B. Renal Veins

1. For routine evaluation of the renal veins (ie, in an examination not performed specifically for evaluation of suspected renal vein pathology), grayscale and color Doppler longitudinal view of the main renal vein with accompanying spectral Doppler waveform should be obtained.

2. If there is specific concern for renal vein stenosis or thrombosis, or if abnormal findings are made on routine views, then a more detailed protocol may be performed and may include the following:
 a. Grayscale Imaging: Evaluation of the main renal vein should be performed in longitudinal and transverse views. Notes should be made of any area of stenosis and/or intraluminal thrombus.
 b. Color and Spectral Doppler Evaluation: Analysis of main renal vein and intraparenchymal renal vein waveforms should be performed to evaluate for renal vein stenosis. Peak velocity should be recorded proximal to, within, and distal to the stenosis. In the presence of thrombus, color and spectral Doppler may be used to evaluate for vascularity of the thrombus and presence or absence of extension of thrombus into the inferior vena cava (IVC) should be documented.
c. **CEUS**: The use of microbubble ultrasound contrast agents may be helpful in identification of main renal vein stenosis or thrombosis as well as tumor neovascularity within thrombus. Note: This would be an off-label use of CEUS based upon current FDA approval status.

VI. DOCUMENTATION

Adequate documentation is essential for high-quality patient care. There should be a permanent record of the ultrasound examination and its interpretation. Comparison with prior relevant imaging studies may prove helpful. Images of all appropriate areas, both normal and abnormal, should be recorded. Variations from normal size should generally be accompanied by measurements. Images should include the patient identification, facility identification, examination date, and image orientation. An official interpretation (final report) of the ultrasound examination should be included in the patient’s medical record. Retention of the ultrasound examination images should be consistent both with clinical need and with relevant legal and local health care facility requirements.

Reporting and communication efforts should be in accordance with the [ACR Practice Parameter for Communication of Diagnostic Imaging Findings](https://www.acr.org) [31].

VII. EQUIPMENT SPECIFICATIONS

Duplex and color Doppler ultrasound of the renal arteries should be performed in real time using a scanner with color and spectral Doppler capabilities. Transducer selection should be based on body habitus. In adults, typically used transducer frequencies range from 2 to 9 MHz. In neonates, transducer frequencies of 7 to 15 MHz are typically used.

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading [Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education](https://www.acr.org) on the ACR website.

Equipment performance monitoring should be in accordance with the [ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment](https://www.acr.org) [32].

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading [The Process for Developing ACR Practice Parameters and Technical Standards](https://www.acr.org) on the ACR website by the Committee on Practice Parameters – Ultrasound of the ACR Commission on Ultrasound, in collaboration with the AIUM, the SPR, and the SRU.

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR

Nirvikar Dahiya, MBBS, Chair
Lorna P. Browne, MB, BCh
Harriet J. Paltiel, MD
Maryellen R.M. Sun, MD
Sharlene A. Teefey, MD, FACR

AIUM

Edward I. Bluth, MD, FACR
Laurence Needleman, MD, FACR
John S. Pellerito, MD, FACR
Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

SPR
- Monica Epelman, MD
- Erica Riedesel, MD
- Judy H. Squires, MD

SRU
- Shweta Bhatt, MB, BS
- Leslie M. Scoutt, MD

Committee on Practice Parameters – Ultrasound
(ACR Committee responsible for sponsoring the draft through the process)

- Sheila Sheth, MD, FACR, Chair
- Marcela Böhm-Velez, MD, FACR
- Kaleigh Burke, MD
- Nirvikar Dahiya, MD, MBBS, FAIUM
- Christopher Fung, MD
- Helena Gabriel, MD

- Jamie Hui, MD
- Stephen I. Johnson, MD
- David U. Kim, MD
- Harriet J. Paltiel, MD
- Henrietta K. Rosenberg, MD, FACP
- Jason M. Wagner, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

- Beverley Newman, MB, BCh, BSc, FACR, Chair
- Timothy J. Carmody, MD, FACR
- Tara M. Catanzano, MB, BCh
- Lee K. Collins, MD
- Kassa Darge, MD, PhD
- Monica S. Epelman, MD
- Dorothy L. Gilbertson-Dahdal, MD
- Safwan S. Halabi, MD

- Kerri A. Highmore, MD
- Sue C. Kaste, DO
- Terry L. Levin, MD, FACP
- Matthew P. Lungren, MD, MPH
- Helen R. Nadel, MD
- Sumit Pruthi, MBBS
- Pallavi Sagar, MD
- Richard B. Towbin, MD, FACP

Beverly G. Coleman, MD, FACP, Chair, Commission on Ultrasound
Richard A. Barth, MD, FACP, Chair, Commission on Pediatric Radiology
Jacqueline Anne Bello, MD, FACP, Chair, Commission on Quality and Safety
Matthew S. Pollack, MD, FACP, Chair, Committee on Practice Parameters and Technical Standards
Mary S. Newell, MD, FACP, Vice Chair, Committee on Practice Parameters and Technical Standards

Comments Reconciliation Committee

- Eric Friedberg, MD, FACP, Chair
- Madeleine Lewis, MD, Co-Chair
- Richard A. Barth, MD, FACP
- Jacqueline A. Bello, MD, FACP
- Shweta Bhatt, MB, BS
- Edward J. Bluth, MD, FACP
- Lorna P. Browne, MB, BCh
- Beverley G. Coleman, MD, FACP
- Nirvikar Dahiya, MBBS
- Kassa Darge, MD, PhD
- Richard Duszak, Jr., MD, FACP
- Monica Epelman, MD
- Laurence Needleman, MD, FACP

- Ms. Marsha Neumyter
- Mary S. Newell, MD, FACP
- Beverley Newman, MB, BCh, BSc, FACP
- Harriet J. Paltiel, MD
- John S. Pellerito, MD, FACP
- Matthew S. Pollack, MD, FACP
- Erica Riedesel, MD
- Leslie M. Scoutt, MD
- Sheila Sheth, MD, FACP
- Judy H. Squires, MD
- Maryellen R. M. Sun, MD
- Timothy L. Swan, MD, FACP
- Sharlene A. Teefey, MD, FACP
REFERENCES

*Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter

2008 (Resolution 9)
Revised 2013 (Resolution 14)
Amended 2014 (Resolution 39)
Revised 2019 (Resolution 32)
Amended 2019 (Resolution 23)