PRACTICE PARAMETER FOR RADIATION ONCOLOGY

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiation oncology care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

---

2 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, N.W.2d (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised collaboratively by the American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO).

Radiation oncology, together with surgical and medical oncology, is one of the primary disciplines involved in cancer treatment. Radiation therapy with either curative or palliative intent is used to treat up to 60% of all patients with cancer [1]. Radiation therapy is the use of ionizing radiation, delivered with either external beam therapy or brachytherapy, to destroy or inhibit the growth of malignant tissues. It is also used in selected clinical situations to inhibit the growth or modulate the function of tissues in certain benign diseases.

Separate practice parameters and standards define the appropriate use of external beam therapy, brachytherapy, and other therapies using radionuclides. This practice parameter addresses the overall role of the radiation oncologist, the Qualified Medical Physicist, and other specialized personnel involved in the delivery of radiation therapy.

The use of radiation therapy requires detailed attention to personnel, equipment, patient and personnel safety, and continuing staff education. Because the practice of radiation oncology occurs in a variety of clinical environments, the judgment of a qualified radiation oncologist should be used to apply these practice parameters to individual practices.

Radiation oncologists are specifically trained to weigh the benefits with the potential risks associated with exposure to ionizing radiation. Radiation oncologists will consider these risks in all aspects of patient care from the initial diagnostic work-up to simulation, treatment, and follow-up. Radiation oncologists should follow the guiding principle of limiting radiation exposure to patients while accomplishing the therapeutic goals.

II. PROCESS OF RADIATION THERAPY

The clinical use of ionizing radiation is a complex process involving trained personnel who carry out a variety of inter-related activities.

A. Clinical Evaluation

The initial evaluation of the patient includes obtaining a history (including special considerations such as prior radiation treatment, implanted electronic devices, and pregnancy status), performing a physical examination with close attention to the site(s) relevant to the diagnosis, reviewing pertinent pathologic diagnosis, diagnostic studies and reports, and communicating with the referring physician, primary care provider, and other appropriate physicians involved in the patient’s care [2]. The extent of the tumor must be determined and recorded for staging; this will facilitate treatment decisions, determine prognosis, and allow a comparison of treatment results. Pain assessments or needs assessments should be performed when clinically appropriate.

B. Establishing Treatment Goals

The goal(s) of treatment options, with their relative merits and risks, should be discussed with the patient. If the treatment plan requires combining radiation therapy with surgery, chemotherapy, or other systemic therapies, the anticipated interactions and optimum sequencing between the modalities should be discussed with the patient. A summary of the consultation should be communicated to the referring physician, primary care provider, and other physicians involved in the care of the patient [2].

C. Informed Consent

Prior to simulation and treatment, there should be documentation of the informed consent process, specific to that patient and diagnosis, that includes anticipated side effects, potential complications, availability of alternative treatment options and the benefits of having the treatment. The patient’s signature or legal representative’s signature and date should be on the informed consent document. Any informed consent
process should be consistent with appropriate state governing law(s) [3].

D. Patient Education

To help patients retain the information that the radiation oncologist imparts to them at the time of the consultation visit, reinforcement of patient education may be considered, such as subsequent visits between the patient and the radiation oncologist, nurse, nurse practitioner, or physician assistant, and/or the use of printed materials or electronic presentations.

E. Simulation of Treatment

Simulation is the process of establishing and documenting the treatment position, the appropriate volume to be treated, and the normal structures within or adjacent to this volume. The radiation oncologist should provide a patient-specific written or electronic order for the simulation staff to include detail such as:

1. Treatment site
2. Optimal patient position
3. Patient repositioning/immobilization devices to be used and/or fabricated to aid optimal positioning reproducibility
4. Planned reference points for image-guidance such as the tumor itself, bone anatomy, or implanted fiducial markers
5. Method of obtaining anatomical data such as computed tomography (CT), magnetic resonance imaging (MRI), conventional simulation, positron emission tomography/computed tomography (PET/CT), multimodality image fusion, and other imaging modalities, and the use of oral and/or intravenous contrast agents.
   a. Appropriate screening for risks associated with the use of contrast agents must be done prior to their administration.
6. Need for obtaining anatomical and/or imaging data that takes into account tumor or organ motion

As indicated, the radiation oncologist should provide written orders for pain medication, anxiolytics, and/or sedation/anesthesia for simulation and/or treatment.

Devices to aid in positioning and immobilizing the patient, normal tissue shielding, compensating filters, bolus, stents, etc are designed to optimize treatment delivery and reduce treatment toxicity. They should be used where clinically appropriate.

Beam entry sites and/or other reference points helpful in patient positioning and field localization are identified on the patient. All field setups should be documented by description of the patient position, properly labeled photographs, and/or diagrams and radiologic images.

After treatment planning is completed, a simulation-per-plan procedure may be appropriate. This procedure involves duplicating the intended treatment setup either on a conventional simulator or on the treatment unit itself. Verification images and associated treatment parameters are obtained and are compared to planning images generated from the treatment planning system to confirm accuracy and reproducibility of treatment setup and delivery.

F. Treatment Planning

The cognitive process of radiation treatment planning requires the radiation oncologist to have knowledge of the natural history of the disease to be treated and to determine the target site, its extent, and its relationship with adjacent normal tissues. This process is based on consideration of the history, physical examination, endoscopy, diagnostic imaging, surgical findings, pathological findings, response to previous therapies, and whether concurrent systemic therapy or radiation modifiers will be used during the course of radiation therapy.

When ionizing radiation is to be used, the radiation oncologist must select beam characteristics and/or
radionuclide sources, method of delivery, doses, and coordination with other treatments. Multimodality treatment should be coordinated in collaboration with medical and surgical oncologists and other specialists. The radiation oncologist determines the dose to be delivered to the target volume, the limiting (constraint) doses to organs at risk and the fractionation desired. Using these parameters, the radiation oncologist directs the Qualified Medical Physicist and/or dosimetrist in the design of potential treatment programs, or develops them personally. Contouring of well-delineated organs at risk may be performed by the dosimetrist or other appropriately trained staff under the supervision of a Qualified Medical Physicist. For all cases, the review and approval by the radiation oncologist is required. It is the responsibility of the radiation oncologist to determine and contour the gross tumor volume, clinical target volume, review and approval of the planning target volume, and define or review the internal target volume when applicable. This process uses the patient data obtained during the initial simulation procedure. Beam-specific physical data are used, with source data and other physical characteristics measured by the Qualified Medical Physicist, to calculate the dose to a specific point within the patient or to calculate the dose distribution within a region of interest.

The radiation oncologist, in consultation with the dosimetrist and/or Qualified Medical Physicist, selects the treatment plan. The radiation oncologist prescribes the radiation treatment course. The prescription should include:

1. Anatomically specific target volumes including specific names of boost volumes, as appropriate, with their associated total doses
2. Treatment technique (includes, but is not limited to: anteroposterior [AP], posteroanterior [PA], right and/or left laterals, right and/or left anterior or posterior oblique, tangents, 4-field, 3-field, en face electrons, dynamic conformal arc therapy [DCAT], intensity modulated radiation therapy [IMRT], volumetric modulated arc therapy [VMAT], stereotactic radiosurgery [SRS], stereotactic body radiation therapy [SBRT], brachytherapy)
3. Beam-modifying devices (eg, bolus thickness)
4. Radiation modality
5. Energy(s)
6. Dose per fraction
7. Total number of fractions
8. Fractionation schedule
9. Total dose
10. Prescription point/isodose line
11. Reference to image guidance when appropriate

The dose per fraction and total dose should be specified for each prescription volume. The radiation oncologist, when applicable, should document appropriate specific dose-volume constraints for organs at risk [4]. The prescription, treatment plan, and dose calculation must be signed and dated by the radiation oncologist prior to the initiation of radiation therapy.

Radiation treatments are carried out by the radiation therapist, following the prescription and treatment plan of the radiation oncologist. Any changes in the planned treatment by the radiation oncologist requiring significant adjustment in immobilization, new calculations, or a new treatment plan must be documented in the patient’s record, signed (or initialed), and dated by the radiation oncologist.

G. Physics

Depending on complexity of treatment plan, the radiation oncologist works with the dosimetrist and Qualified Medical Physicist to perform the calculations necessary to determine the appropriate dose to be delivered by the treatment equipment. This requires knowledge of the physical properties of the treatment units and whether external beams or radioactive implants will be used. These calculations must be checked by an independent qualified person or method before the first treatment.
External beam radiation therapy is usually delivered in single daily doses for several weeks, or in multiple increments daily over the same period (hyperfractionation) or over shorter times (accelerated fractionation). Fractionation schedules in which the intended dose is delivered over a shorter time period than is typically used in standard fractionation using larger-than-usual fraction sizes (hypofractionation) may be appropriate in some clinical situations.

There are various techniques to deliver external beam radiation therapy. The appropriateness of each technique will depend on patient-specific factors. See the ACR Practice Parameter for 3D External Beam Radiation Planning and Conformal Therapy [5], ACR Practice Parameter for Intensity Modulated Radiation Therapy (IMRT) [6], ACR–ASTRO Practice Parameter for the Performance of Proton Beam Radiation Therapy [7]. There is also an ASTRO white paper discussing the safe delivery of IMRT [4]. For some patients, image-guided radiation therapy is clinically indicated, and centers should refer to the ACR–ASTRO Practice Parameter for Image-Guided Radiation Therapy (IGRT) [8] and the ASTRO white paper discussing the safety of IGRT [9].

Verification images are produced to confirm accurate treatment positioning and accurate treatment portals. To confirm accurate treatment positioning, images taken with the patient in the treatment position are compared with the reference treatment-planning images. For example, an isocenter location may be verified with an orthogonal image pair. When clinically relevant, portal images of each static treatment field should be taken. Although it is ideal for verification images to be reviewed prior to the first treatment, at a minimum they should be reviewed by the radiation oncologist before the second treatment.

A set of patient-positioning or target-localization images should be taken at least weekly and for any new fields. Verification images should then be reviewed by the radiation oncologist prior to the next treatment. The radiation oncologist is responsible for selecting the optimal imaging modality and frequency for verification of patient position based on the clinical situation. Dosimeters may be used to measure and record actual doses at specific anatomic sites.

It is recognized that more complex or high-dose/high-risk treatments may require more frequent and/or more detailed verification imaging, such as cone-beam CT, and may require review by the radiation oncologist more intensively, such as prior to each treatment.

I. Patient Evaluation during Treatment

The radiation oncologist monitors the patient’s progress, checks entries in the treatment chart, and discusses the plan of therapy and any changes with appropriate team members. Patient evaluation and physical examination by a radiation oncologist during treatment should be performed weekly or once every 5 fractions, whichever frequency is greater, and more often when warranted. Pertinent laboratory and imaging studies are ordered and reviewed. The patient and/or referring physician should be informed of the progress of treatment whenever deemed appropriate.

J. Treatment Summary

After a course of treatment is completed, the radiation oncologist should document a summary of the treatment delivered including site treated, modality used, dose per fraction, total dose, elapsed time, dates of treatment, concurrent therapy, treatment response (if applicable), relevant side effects (if applicable), and other observations. This should be communicated to the referring physician and any other physicians involved in the care of the patient in a timely fashion. Radiation treatment records should be retained for at least 5 years after the death of the patient or according to state law(s).

K. Follow-Up Evaluation

After treatment, periodic assessments of tumor response and sequelae of treatment are recommended as
clinically indicated. They should be communicated to other appropriate physicians. Early detection of post-treatment tumor progression may permit additional, potentially beneficial treatment. Early detection and treatment of radiation-induced sequelae may avoid serious problems later. If direct follow-up is not possible or practical because of issues such as patient medical condition, patient choice, or unreasonable travel, the radiation oncologist should review follow-up documentation provided by other pertinent medical providers regarding the patient’s condition or communicate with other medical providers regarding appropriate follow-up regarding the radiation treatment.

L. Brachytherapy

Brachytherapy may be used for many sites and may be delivered with either low-dose-rate or high-dose-rate techniques. The reader is referred to ACR–ABS HDR and LDR practice parameters and ASTRO HDR white paper, relating to low-dose-rate brachytherapy, low-dose-rate brachytherapy for prostate cancer, and high-dose-rate brachytherapy [10-13].

M. Stereotactic Radiosurgery

Stereotactic radiosurgery/stereotactic body radiation therapy may be used for certain benign or malignant intracranial and extracranial lesions. The reader is referred to ACR–ASTRO practice parameters and ASTRO white paper relating to SRS and SBRT [14-16].

N. Other Treatment Modalities

Other treatment modalities are used alone or combined (simultaneously or sequentially) with external beam radiotherapy or brachytherapy to enhance the antitumor effects and decrease the effects on surrounding normal tissues. Examples include radiosensitizing or radioprotecting drugs, hyperthermia, photodynamic therapy, and the use of unsealed-source radionuclides [17].

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

To achieve optimal-quality patient care outcomes, the practice of modern radiation oncology demands effective leadership and a well-developed team approach that operates within a culture of safety [18]. Members of the radiation oncology health care team include the personnel outlined below:

A. Personnel

1. Medical Director
   Each radiation oncology program must have a medical director who is a radiation oncologist as described below in 2.a. and 2.b.
   a. The medical director will be responsible for oversight of the department, including policies, procedures, and personnel.
   b. The medical director will be responsible for instituting and supervising the continuing quality improvement (CQI) program through direct or delegated leadership.

2. Radiation Oncologist (staff)
   a. Certification in General Radiology by the American Board of Radiology (ABR) of a physician who confines his/her professional practice to radiation oncology or certification in Radiation Oncology or Therapeutic Radiology by the ABR, the American Osteopathic Board of Radiology, the Royal College of Physicians and Surgeons of Canada, or the Collège des Médecins du Québec may be considered proof of adequate physician qualifications.
      i. Radiation oncologists with time-limited certificates of board certification are to be enrolled in the certifying board’s maintenance of certification program and satisfactorily renew certification in a timely fashion.
      ii. Radiation oncologists with non-time-limited certificates are strongly encouraged to voluntarily participate in the maintenance of certification program.
b. Satisfactory completion of a radiation oncology residency program approved by the American Council of Graduate Medicine Education (ACGME), the Royal College of Physicians and Surgeons of Canada (RCPSC), the Collège des Médecins du Québec, or the American Osteopathic Association (AOA).

For radiation oncologists who are eligible but not yet certified by the date of initial employment, a pathway will be defined for individuals to become licensed and certified in accordance with 2a.

The continuing education of a radiation oncologist should be in accordance with the ACR Practice Parameter for Continuing Medical Education (CME) [19] and comply with all licensing entities under which the radiation oncologist practices.

3. Qualified Medical Physicist

A Qualified Medical Physicist is an individual who is competent to practice independently one or more of the subfields in medical physics. The American College of Radiology (ACR) considers certification, continuing education, and experience in the appropriate subfield(s) to demonstrate that an individual is competent to practice one or more of the subfields in medical physics and to be a Qualified Medical Physicist. The ACR strongly recommends that the individual be certified in the appropriate subfield(s) by the American Board of Radiology (ABR), the Canadian College of Physics in Medicine, the American Board of Science in Nuclear Medicine (ABSNM), or the American Board of Medical Physics (ABMP).

A Qualified Medical Physicist should meet the ACR Practice Parameter for Continuing Medical Education (CME). [19]

The appropriate subfield of medical physics for this practice parameter is Therapeutic Medical Physics (previous medical physics certification categories including Radiological Physics and Therapeutic Radiological Physics are also acceptable). (ACR Resolution 17, adopted in 1996 – revised in 2008, 2012, 2022, Resolution 41f)

4. Radiation Therapists and Simulation Staff

Radiation therapists and simulation staff should fulfill state licensing requirements. Radiation therapists should be certified in radiation therapy by the American Registry of Radiologic Technologists (ARRT), or be eligible for such certification. Simulation staff should be certified by ARRT in either radiation therapy or diagnostic imaging, or eligible for such certification.

5. Dosimetrist

Medical dosimetrists should be certified in medical dosimetry by the Medical Dosimetrist Certification Board (MDCB), or be eligible for such certification.

6. Patient Support Staff

Individuals involved in the nursing care of patients should have appropriate nursing credentials and appropriate experience in the care of radiation therapy patients. Oncology nursing certification is encouraged. Access to qualified nutritionists or social workers should be in place.

7. Physician Assistant

A qualified physician assistant is an individual who has completed postgraduate education and possesses a current certification from the National Commission on Certification of Physician Assistants (NCCPA). Continuing education of a physician assistant should be in accordance with NCCPA guidelines and the physician assistant must have obtained the specified licensure in
accordance with the state(s) in which they are practicing as well as the required continuing medical education.

8. Nurse Practitioner

A qualified nurse practitioner is an individual who has completed postgraduate education in nursing and possesses current licensure/certification as a nurse practitioner in accordance with the state(s) in which they are practicing.

9. Administrative Support

Administrative staff is valuable for budgeting and managing resources that enable the facility to acquire and maintain the equipment needed for standard treatment practices and quality assurance procedures and to achieve and sustain adequate clinical staffing levels that assure a safe and effective treatment environment.

All personnel should have continuing education relevant to their clinical responsibilities.

B. Availability

1. A radiation oncologist should be available for direct care and quality review and should be on the premises whenever radiation treatments are being delivered. The radiation oncologist, facility, and support staff should be available to initiate urgent treatment within a medically appropriate response time on a 24-hour basis or refer to a facility that is available to treat on a 24-hour basis. When unavailable, the radiation oncologist is responsible for arranging appropriate coverage. A radiation oncologist’s availability must be consistent with state and federal requirements.

2. The Qualified Medical Physicist must be available when necessary for consultation with the radiation oncologist and to provide advice or direction to technical staff when a patient’s treatments are being planned or patients are being treated. The center should have written policies specifying any special procedures (e.g., high-dose-rate brachytherapy [10], SRS [14], or SBRT [15]) that require the presence of the Qualified Medical Physicist. When a Qualified Medical Physicist is not immediately available on-site during routine patient treatment, clinical needs should be met by using documented procedures. Authority to perform specific clinical physics duties must be established by the Qualified Medical Physicist for each member of the physics staff in accordance with his or her competence. The radiation oncologist should be informed of the clinical activities authorized for each member. Refer to the ACR–AAPM Technical Standard for the Performance of Radiation Oncology Physics for External Beam Therapy [20] for minimal requirements for physics support.

IV. EQUIPMENT REQUIREMENTS

A. Core Radiation Oncology Capabilities

At a minimum, the radiation oncology facility must have these core capabilities: a megavoltage radiation therapy delivery system, a computer-based treatment-planning system, a treatment management system, access to simulation equipment, and the ability to fabricate or obtain customized treatment aids. The following specific equipment must be available to patients in all facilities:

1. Megavoltage radiation therapy equipment such as high-energy photon equipment capable of delivering 3D conformal therapy and IMRT. CT simulator capable of duplicating the setups of the facility’s megavoltage units and producing either standard images or digitally reconstructed radiographs of the fields to be treated. A dedicated CT simulator is preferred but could be substituted with a diagnostic CT scanner modified to obtain imaging data replicating patient treatment position and suitable for radiation therapy treatment planning. Satellite facilities must have access to simulator equipment. The CT scanner should have a gantry diameter sufficient to accommodate the patient in normal treatment positions as encountered in the clinic.

2. Computerized dosimetry equipment capable of providing external beam isodose curves as well as
brachytherapy isodose curves, 3-D, IMRT treatment planning and Dose Volume Histograms
3. Physics calibration devices for all equipment, including a field dosimetry system (electrometer and ion chamber) and an ADCL-calibrated local standard dosimetry system
4. Physics equipment and/or software for IMRT QA measurement and analysis
5. Beam-shaping devices
6. Immobilization devices
7. An in vivo dosimetry system or capability

B. Specialized Radiation Oncology Capabilities

The facility should have available equipment to provide specialized treatments such as low-dose-rate brachytherapy and high-dose-rate brachytherapy, SBRT, SRS, radionuclide therapy, electron beam, or other capabilities for treating skin or superficial lesions, or the ability to refer for these services.

C. Maintenance and Repair

Regular preventive maintenance and repair of equipment by qualified personnel are mandatory. The Qualified Medical Physicist is responsible for documenting preventive maintenance and repair. It is recommended that the facility maintain up-to-date statistics regarding treatment unit uptime.

The facility should have procedures in place to provide treatment for patients in case of extended treatment interruption due to equipment repair, maintenance, or replacement or loss of personnel.

V. QUALITY ASSURANCE

A. Patient safety measures must include:

1. A treatment management system for prescription, treatment parameters setup and delivery, and daily dose recording and summation.
2. A physics program for calibrating equipment that ensures accurate dose delivery to the patient (see ACR–AAPM Technical Standard for the Performance of Radiation Oncology Physics for External Beam Therapy [20]).
3. A system for independent verification of treatment parameters (external beam) by another qualified person or method before the first treatment
4. A system for the radiation oncologist and Qualified Medical Physicist to check independently all relevant brachytherapy practice parameters to be used prior to each procedure
5. A program to prevent mechanical injury by the machine or accessory equipment
6. Visual and audio contact with the patient while under treatment
7. A policy requiring two forms of patient identification as well as verification of treatment parameters prior to each treatment

B. Personnel safety measures must include:

1. Appropriate room shielding
2. Systematic inspection of interlock systems
3. A radiation exposure–monitoring program, as required by the Nuclear Regulatory Commission or appropriate state agencies
4. Routine leak testing of all sealed sources, as required by regulatory agencies
5. Appropriate safety equipment for use of sealed sources

VI. EDUCATIONAL PROGRAM

Continuing medical education programs should include the radiation oncologists, Qualified Medical Physicists, dosimetrist, oncology nurses, nurse practitioners, physician assistants, and radiation therapists. The programs must include the safe operation of facility equipment as appropriate to the individual’s
responsibility and the treatment techniques and new developments in radiation oncology. In addition, each licensed staff member will undertake and document continuing professional education as required by his/her licensing authority.

VII. QUALITY IMPROVEMENT

The medical director of radiation oncology is responsible for instituting and supervising the CQI program. It is the responsibility of the director to ensure there is a process in the department to identify problems, see that actions are taken, and evaluate the effectiveness of the actions.

The medical director will select appropriate personnel to constitute a CQI Committee, which will meet at least quarterly and maintain records. Problems recognized should be addressed. Special studies or further in-depth analysis required will be regularly performed, documented, and presented to the committee. CQI efforts will include review of policies, procedures, and structural elements of the practice, to identify areas for potential improvement in the Committee’s ongoing efforts to minimize risk of errors, improve patient safety, and optimize patient outcomes. CQI records should be maintained in a manner that will, to the extent permitted by state and federal law, protect the confidentiality and discoverability of these records.

The following items are typical components of a CQI Program:

A. Peer Review

Peer review is a valuable tool that is central to CQI programs. A comprehensive discussion of peer review within radiation oncology is found in the ASTRO white paper [21]. Peer-review programs for all professional personnel within a radiation oncology department provide significant opportunities for improved patient safety and quality and should be evaluated for each practice on how best to implement peer review into their CQI programs.

Methodologies of peer review are numerous, and facilities are encouraged to participate in several formats of peer review. Case-specific physician peer review is encouraged on a weekly basis with the radiation oncologists presenting their new patients who have recently or will soon be starting a course of external beam radiation therapy, brachytherapy, radiosurgery, and stereotactic body radiation therapy. This conference should be attended by radiation oncologist(s), Qualified Medical Physicist(s), dosimetrist(s), radiation therapist(s), and nursing staff. The case-specific review should be performed by other radiation oncologists with attention to indications for radiation therapy, target(s), dose per fraction, total dose, fractionation schedule, and available Dose-Volume Histogram data. Attendance and patients discussed should be recorded. Recording of feedback and follow-up action is encouraged.

It is recognized that the peer-review process for the radiation oncologist and Qualified Medical Physicist when they are the lone professional in the practice presents a unique and difficult situation; however, the practice should institute a documented peer-review mechanism [20].

B. Periodic Audit of Radiation Oncology Medical Records

As a component of the CQI process, an appropriate sample of charts must be reviewed to assess comprehensive documentation of the care administered to the patient. This periodic chart review process should be submitted to the CQI program, with feedback provided to the staff and a mechanism of supplemental chart reviews to assure improvement in areas noted to be deficient. Critical elements that could be included in a comprehensive review are as follows:

1. Diagnosis
2. Stage of disease
3. Pertinent pathology report
4. Pertinent history and physical examinations
5. Signed and dated treatment plans and prescriptions at the beginning of treatment along with appropriately documented changes
6. Planned total dose, numbers of fractions, dose/fraction, and fractions/day
7. Method of delivery
8. Treatment site or treatment volume, with properly labeled diagrams and/or photographs of fields
9. Appropriately documented verification images
10. Isodose plan and/or dosimetry calculations
11. Documentation of applicable physics quality assurance
12. Summary or a completion-of-therapy note
13. Follow-up plan
14. Documentation that the treatment record was checked weekly during treatment
15. Documented periodic examination of the patient by the radiation oncologist, including patient progress and tolerance
16. Documented informed consent

C. Review of physics quality improvement program report

D. Review of all cases in which there is a variation from the prescription of greater than 10% of the intended total dose; this review includes any chart in which mathematical corrections of 10% or more are made on the second check of dose calculations

E. If a new treatment modality or technique is started in a facility (eg, high-dose-rate brachytherapy, SRS), the procedures, results, problems, complications, etc, should be reviewed by the CQI Committee in a timely fashion consistent with patient safety.

F. Review of any chart in which an incident report is filed or in which there is a report of an accident or injury to a patient

G. Review of unplanned interruptions during treatment; unusual or severe, early or late complications of treatment, and unexpected deaths

H. Review of outcome studies from the cancer committee, tumor registry, or any other section, department, or committee of an associated hospital that includes radiation oncology patients

I. Patient Outcome

Radiation oncologists should attempt to follow up, at appropriate intervals, all patients treated with curative intent and document the outcome of therapy, including results of treatment (tumor control, survival) and significant sequelae. Patients who are treated with palliative intent may also require close follow-up. For patients who are not followed by the radiation oncologist, the name of the physician who will be responsible for the patient's ongoing care should be documented.

J. Appropriate patient radiation records should be kept in the radiation oncology department or facility, consistent with state and local requirements.

K. Patient-Related Outcome Data

Facilities should collect data for an annual summary, such as:
1. Number of new patients
2. Number of consultations
3. Number of patients treated
4. Treatment intent: curative or palliative
5. Number of simulations, external treatments, and/or brachytherapy procedures performed.

Facilities should also strive to collect data on:
1. Anatomic site and stage (American Joint Committee on Cancer, International Federation of Gynecology and Obstetrics, etc) of tumors treated
2. Stage-related survival
3. Complications

These functions can be accomplished by maintaining a tumor registry.

L. Patient Satisfaction and Quality-of-Life Surveys

Throughout the year, the facility may endeavor to perform surveys of patient attitudes, observations, and recommendations.

M. Other General Information That Helps to Assure Quality

The following items are suggested:
1. New patient review: documented review of plans for management of new patients; this should be attended by the radiation oncologist(s), and may include representatives of physics and dosimetry staff, nursing, and radiation therapist(s).
2. Chart review: documented weekly review of the treatment records of patients under treatment. This should be attended by the radiation oncologists and may include representatives of physics, dosimetry, radiation therapists, and nursing. This could be combined with new patient review.
3. Image verification review: documented and dated review of appropriate initial and periodic (at least every 5 treatments) images by the radiation oncologist.
4. Physics chart review: weekly review of patient treatment records should be performed by a Qualified Medical Physicist, in keeping with the ACR–AAPM Technical Standard for the Performance of Radiation Oncology Physics for External Beam Therapy [20].
5. Participation in an incident reporting and learning system is encouraged to facilitate CQI and patient safety.

VIII. DOCUMENTATION

Documentation should be in accordance with the ACR–ASTRO Practice Parameter for Communication: Radiation Oncology [2].

ACKNOWLEDGEMENTS

This practice parameter was revised according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters – Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ASTRO.

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR
Patrick D. Conway, MD, FACR, Chair
Richard L. LaFontaine, PhD
Holly M. Lincoln, MS
Christopher H. Pope, MD, FACR
Naomi R. Schechter, MD

ASTRO
Samuel T. Chao, MD
Arthur K. Liu, MD, PhD
Douglas D. Martin, MD

Committee on Practice Parameters – Radiation Oncology
(ACR Committee responsible for sponsoring the draft through the process)

Alan C. Hartford, MD, PhD, FACR, Chair
Jeff M. Michalski, MD, MBA
Committee on Practice Parameters – Radiation Oncology
(ACR Committee responsible for sponsoring the draft through the process)

Naomi R. Schechter, MD, Vice Chair
Nathan H. J. Bittner, MD
Samuel T. Chao, MD
Chee-Wai Cheng, PhD, FAAPM
Neil B. Desai, MD
Nancy A. Ellerbroek, MD, FACR
Beth A. Erickson, MD, FACR
Lesley A. Jarvis, MD, PhD
Matthew Poggi, MD
Christopher H. Pope, MD, FACR
Helen A. Shih, MD
Nikhil Thaker, MD
Ying Xiao, PhD
Sue S. Yom, MD, PhD
Bassem I. Zaki, MD

Seth A. Rosenthal, MD, FACR, Chair, Commission on Radiation Oncology

Comments Reconciliation Committee
William Small, Jr., MD, FACR, Chair
Eric B. Friedberg, MD, FACR, Co-Chair
Samuel T. Chao, MD
Patrick D. Conway, MD, FACR
Richard Duszak, Jr., MD, FACR
Martin W. Fraser, MS, FACR
Alan C. Hartford, MD, PhD, FACR
Richard L. LaFontaine, PhD
Paul A. Larson, MD, FACR
Holly M. Lincoln, MS
Arthur K. Liu, MD, PhD
Join Y. Luh, MD
Douglas D. Martin, MD
Christopher H. Pope, MD, FACR
Seth A. Rosenthal, MD, FACR
Naomi R. Schechter, MD
Timothy L. Swan, MD, FACR, FSIR
REFERENCES


18. American Society for Radiation Oncology. Safety is no accident - a framework for quality radiation oncology and care. 2012; Available at:


*As of May 2010, all radiation oncology collaborative practice parameters are approved by the ACR Council Steering Committee and the ACR Board of Chancellors and will not go through the ACR Council (ACR Resolution 8, 2010). For purposes of publication, the radiation oncology collaborative practice parameter becomes effective on the first day of the first month following 60 days after final adoption by the ACR BOC. This document is scheduled to begin revision with the other practice parameters and technical standards adopted at ACR Council during the same year.

**Development Chronology for this Practice Parameter**

1990 (Resolution 24)
Revised 1995 (Resolution 38)
Revised 1999 (Resolution 20)
Revised 2004 (Resolution 18)
Amended 2006 (Resolution 16g, 36)
Revised 2009 (Resolution 8)
Revised 2014 (CSC/BOC)
Revised 2018 (CSC/BOC)
Amended 2022 (Resolution 41f)