The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2018 (Resolution 6)

ACR–SPR–SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF RADIOGRAPHY OF THE EXTREMITIES

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the practitioner in light of all the circumstances presented. Thus, an approach that differs from the guidance in this document, standing alone, does not necessarily imply that the approach was below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of this document. However, a practitioner who employs an approach substantially different from the guidance in this document is advised to document in the patient record information sufficient to explain the approach taken.

The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of this document is to assist practitioners in achieving this objective.

1 Iowa Medical Society and Iowa Society of Anesthesiologists v. Iowa Board of Nursing, ___ N.W.2d ___ (Iowa 2013) Iowa Supreme Court refuses to find that the ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008) sets a national standard for who may perform fluoroscopic procedures in light of the standard’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards themselves do not establish the standard of care.
I. INTRODUCTION

This practice parameter was revised by the American College of Radiology (ACR) in collaboration with the Society for Pediatric Radiology (SPR) and the Society of Skeletal Radiology (SSR).

Radiography is a proven and useful procedure for evaluation of the bones, joints, and soft tissues of the extremities. It should be performed for valid medical reasons, using the minimum radiation dose necessary to obtain a diagnostic-quality examination. It is often the first study to be performed for evaluating pathology of the extremities, and additional specialized examinations may be required to complete the evaluation.

This practice parameter provides recommendations for performing extremity radiography and should be applied in accordance with the ACR–SPR Practice Parameter for General Radiography. The ACR–AAPM–SIIM Practice Parameter for Digital Radiography may also be helpful [1,2].

II. INDICATIONS

Indications for radiography of the extremities include, but are not limited to:

1. Trauma
2. Pain
3. Instability
4. Impingement
5. Known and suspected physical abuse, such as in infants and young children (see the ACR–SPR Practice Parameter for Skeletal Surveys in Children [3,4])
6. Metabolic diseases, nutritional deficiencies, and skeletal changes from systemic disease
7. Benign and malignant neoplasms
8. Primary non-neoplastic bone pathology
9. Arthropathy
10. Infection
11. Preoperative or postoperative evaluation and/or follow-up
12. Congenital syndromes and developmental disorders
13. Vascular lesions
14. Evaluation of soft tissues in an extremity (e.g., suspected foreign body)
15. Correlation of abnormal skeletal findings on other imaging studies

III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR–SPR Practice Parameter for General Radiography [1].

IV. SPECIFICATIONS OF EXAMINATION

A. The written or electronic request for a radiograph of the extremities should provide sufficient information to demonstrate the medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history (including known diagnoses). Additional information regarding the specific reason for the examination or a provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care provider. The accompanying clinical information should be provided by a physician or other appropriately licensed health care provider familiar with the patient’s clinical problem or question and consistent with the state scope of practice requirements. (ACR Resolution 35, adopted in 2006 – revised in 2016, Resolution 12-b)
All facilities should have protocols for standard images of each anatomic area, including appropriate positioning, centering, and beam collimation for all extremity imaging. These protocols should be designed to optimize diagnostic information while minimizing radiation exposure. Gonadal shielding should be used when appropriate.

For the pregnant or potentially pregnant patient, see the ACR-SPR Practice Parameter for Imaging Pregnant or Potentially Pregnant Adolescents and Women with Ionizing Radiation [5]. If the examination is performed, the abdomen and pelvis should be shielded with a lead apron or similar device and the minimum diagnostic views performed.

B. The following table (Table 1) lists the minimum recommended views in routine circumstances. In many instances, there is little or no scientific evidence in the literature to determine which views constitute the minimum requirement; thus, the recommendations in those instances reflect the opinions of the authors supported by expert opinion in the literature.

However, the views may be modified for any given clinical situation. Additional views may be warranted as part of the initial examination, or after review of the initial images, to clarify suspected pathology. Certain clinical situations routinely may require more views than the minimum for a given anatomic area. Furthermore, additional imaging examinations may be indicated based on the evaluation of the images. For example, when toddler fracture is a concern, an oblique view of the tibia may be helpful in demonstrating an occult fracture not visible on the routine anteroposterior (AP) and lateral views. Conversely, it should be understood that this list of minimum views is not an absolute dictum; in certain clinical scenarios, radiologists and nonradiologist clinicians may rely on their knowledge and experience to further limit the necessary views. For example, in skeletal surveys for systemic disease, AP views are often sufficient.

<table>
<thead>
<tr>
<th>Anatomic Area</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scapula</td>
<td>AP and lateral [6]</td>
</tr>
<tr>
<td>Clavicle</td>
<td>AP and AP angulated view [7]</td>
</tr>
<tr>
<td>Acromioclavicular (AC) joint</td>
<td>Upright AP and outlet (lateral) view collimated to the AC joint [8]</td>
</tr>
<tr>
<td>Shoulder</td>
<td>Two views, one of which should be AP or Grashey, and additional view(s) as indicated by clinical circumstances [9,10]</td>
</tr>
<tr>
<td>Humerus</td>
<td>AP and lateral [6,11]</td>
</tr>
<tr>
<td>Elbow</td>
<td>AP, lateral and radial head view for trauma patients [12,13]</td>
</tr>
<tr>
<td>Forearm</td>
<td>AP and lateral [12]</td>
</tr>
<tr>
<td>Wrist</td>
<td>PA, oblique, and lateral [14-16]</td>
</tr>
<tr>
<td>Hand</td>
<td>PA and oblique [15,16]</td>
</tr>
<tr>
<td>Hand bone age</td>
<td>PA, left hand and wrist [17]</td>
</tr>
<tr>
<td>Fingers</td>
<td>PA, oblique, and lateral [15,16]</td>
</tr>
<tr>
<td>Anatomic Area</td>
<td>Views</td>
</tr>
<tr>
<td>Hip</td>
<td>AP and lateral (frog-leg, cross-table, or other lateral options) [18-21]</td>
</tr>
<tr>
<td>Pelvis</td>
<td>AP [22]</td>
</tr>
<tr>
<td>Femur</td>
<td>AP and lateral [20,23]</td>
</tr>
<tr>
<td>Patella</td>
<td>Lateral and patellar/axial [24]</td>
</tr>
<tr>
<td>Knee</td>
<td>AP and lateral (cross-table lateral recommended for trauma patients) [25-28]</td>
</tr>
<tr>
<td>Tibia-fibula</td>
<td>AP and lateral [23,29]</td>
</tr>
<tr>
<td>Ankle</td>
<td>AP, oblique (mortise), and lateral [16,23,30,31]</td>
</tr>
<tr>
<td>Calcaneus</td>
<td>Lateral and axial [32]</td>
</tr>
<tr>
<td>Foot</td>
<td>AP, oblique, and lateral [16,33]</td>
</tr>
<tr>
<td>Toes</td>
<td>AP, oblique, and lateral [16]</td>
</tr>
</tbody>
</table>

C. Specific Considerations for the Pediatric Patient

1. A grid should not be used for extremity radiography in the infant and small child.
2. The kVp and mAs technique charts should be individualized according to patient size and age.
3. All efforts should be made to minimize radiation exposure to the health care workers and family members involved in patient positioning and immobilization.

4. Metabolic survey imaging of the child should include at least one posteroanterior (PA) view of the wrist and an AP view of the knee.

5. When imaging a symptomatic bone or joint, routine comparison images of the corresponding contralateral bone or joint generally are not indicated; however, limited comparison views may be helpful to verify or exclude pathology after initial review of the symptomatic extremity in some children [34].

6. Leg-length discrepancy should be assessed with a full-length standing AP radiograph of the lower extremities (teleoroentgenogram), ideally with use of a magnification marker or three distinct exposures centered over the hip, knee, and ankle (scanogram or orthoroentgenogram) [35].

Furthermore, certain pathologic processes may warrant simultaneous evaluation of both the right and left sides. This is particularly true for disorders of the hip, for which AP and frog-leg views of the entire pelvis, with appropriate use of gonadal shielding on one of the views, are typically indicated. Incorrect placement of gonadal shields can obscure pathology and increase the need for repeat images [36]. Placement of gonadal shields in girls may not effectively shield the ovaries [37]. Therefore, departments should have guidelines and regular instruction for technologists in the proper placement of gonadal shields [38].

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging Findings [39].

VI. EQUIPMENT SPECIFICATIONS

See the ACR–SPR Practice Parameter for General Radiography [1].

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, registered radiologist assistants, radiologic technologists, and all supervising physicians have a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, “as low as reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All personnel that work with ionizing radiation must understand the key principles of occupational and public radiation protection (justification, optimization of protection and application of dose limits) and the principles of proper management of radiation dose to patients (justification, optimization and the use of dose reference levels) http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf

Nationally developed guidelines, such as the ACR Appropriateness Criteria®, should be used to help choose the most appropriate imaging procedures to prevent unwarranted radiation exposure.

Facilities should have and adhere to policies and procedures that require varying ionizing radiation examination protocols (plain radiography, fluoroscopy, interventional radiology, CT) to take into account patient body habitus (such as patient dimensions, weight, or body mass index) to optimize the relationship between minimal radiation dose and adequate image quality. Automated dose reduction technologies available on imaging equipment should be used whenever appropriate. If such technology is not available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available at the Image Gently® for children (www.imagegently.org) and Image Wisely® for adults (www.imagewisely.org) websites. These advocacy and awareness campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring providers, medical physicists, and radiologists).
Radiation exposures or other dose indices should be measured and patient radiation dose estimated for representative examinations and types of patients by a Qualified Medical Physicist in accordance with the applicable ACR Technical Standards. Regular auditing of patient dose indices should be performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry, the NCRP Report No. 172, Reference Levels and Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation Control Program Director’s National Evaluation of X-ray Trends. (ACR Resolution 17 adopted in 2006 – revised in 2009, 2013, Resolution 52).

VIII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION

Policies and procedures related to quality, patient education, infection control, and safety should be developed and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection Control, and Patient Education appearing under the heading Position Statement on QC & Improvement, Safety, Infection Control, and Patient Education on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards).

Equipment performance monitoring should be in accordance with the ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Radiographic Equipment [40].

ACKNOWLEDGEMENTS

This guideline was revised according to the process described under the heading The Process for Developing ACR Practice Guidelines and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards), by the Committee on Body Imaging (Musculoskeletal) of the ACR Commission on Body Imaging, Committee on Practice Parameters – General, Small, Emergency and/or Rural Practice of the ACR Commission on the General, Small, Emergency and/or Rural Practice, and the Committee on Practice Parameters – Pediatric Radiology in collaboration with the SPR and the SSR.

Collaborative Committee – members represent their societies in the initial and final revision of this practice parameter

ACR
Jonelle M. Thomas, MD, Chair
Alice S. Ha, MD
Kerri Ann Highmore, MD
Gabrielle P. Konin, MD

SPR
Tushar Chandra, MBBS
Siddharth Jadhav, MD

SSR
Daniel S. Siegal, MD
Richard E. A. Walker, MD

Committee on Body Imaging (Musculoskeletal)
(ACR Committee responsible for sponsoring the draft through the process)

William B. Morrison, MD, Chair
Dawn M. Hastreiter, MD, PhD
Mary K. Jesse, MD
Kenneth S. Lee, MD
Suzanne S. Long, MD

Jonathan S. Luchs, MD, FACR
Kambiz Motamedi, MD
Catherine C. Roberts, MD
David A. Rubin, MD, FACR
Naveen Subhas, MD
Committee on Practice Parameters – General, Small, Emergency and/or Rural Practices
(ACR Committee responsible for sponsoring the draft through the process)

Sayed Ali, MD, Chair Padmaja A. Jonnalagadda, MD
Marco A. Amendola, MD, FACR PiL S. Kang, MD
Gory Ballester, MD Jason B. Katzen, MD
Lonnie J. Bargo, MD Serena McClam Liebengood, MD
Christopher M. Brennan, MD, PhD Steven E. Liston, MD, MBA, FACR
Resmi A. Charalel, MD Gagandeep S. Mangat, MD
Charles E. Johnson, MD Tammam N. Nehme, MD
Candice A. Johnstone, MD Jennifer L. Tomich, MD

Committee on Practice Parameters – Pediatric Radiology
(ACR Committee responsible for sponsoring the draft through the process)

Beverley Newman, MB, BCh, BSc, FACR, Chair Pallavi Sagar, MD
Lorna P. Browne, MB, BCh Sue C. Käste, DO
Timothy J. Carmody, MD, FACR Tal Laor, MD
Brian D. Coley, MD, FACR Terry L. Levin, MD
Lee K. Collins, MD Marguerite T. Parisi, MD, MS
Monica S. Epelman, MD Sumit Pruthi, MBBS
Lynn Ansley Fordham, MD, FACR Nancy K. Rollins, MD

Committee on Practice Parameters – General, Small, Emergency and/or Rural Practices
(ACR Committee responsible for sponsoring the draft through the process)

Lincoln Berland, MND, FACR, Chair, Commission on Body Imaging
Robert S. Pyatt, Jr, MD, FACR, Chair, Commission on General, Small, Emergency and/or Rural Practice
Marta Hernandez-Schulman, MD, FACR, Chair, Commission on Pediatric Radiology
Jacqueline Anne Bello, MD, FACR, Chair, Commission on Quality and Safety
Matthew S. Pollack, MD, FACR, Chair, Committee on Practice Parameters & Technical Standards

Comments Reconciliation Committee
Eric Friedberg, MD, FACR, Chair Marta Hernandez-Schulman, MD, FACR
Amy Kotsenas, MD, FACR, Co-Chair Siddharth Jadhav, MD
Jacqueline Anne Bello, MD, FACR Gabrielle P. Konin, MD
Lincoln L. Berland, MD, FACR William B. Morrison, MD
Lynn S Broderick, MD, FACR Beverley Newman, MB, BCh, BSc, FACR
Jeffrey M Brody, MD, FACR Matthew S. Pollack, MD, FACR
Tushar Chandra, MBBS Daniel S. Siegal, MD
Richard Duszak, Jr., MD Timothy L. Swan, MD, FACR, FSIR
Kate A Feinstein, MD, FACR Jonelle M. Thomas, MD
Alice S. Ha, MD Jennifer L Tomich, MD
Kerri Ann Highmore, MD Richard E. A. Walker, MD

REFERENCES

Practice parameters and technical standards are published annually with an effective date of October 1 in the year in which amended, revised, or approved by the ACR Council. For practice parameters and technical standards published before 1999, the effective date was January 1 following the year in which the practice parameter or technical standard was amended, revised, or approved by the ACR Council.

Development Chronology for this Practice Parameter
2003 (Resolution 11)
Amended 2006 (Resolution 17, 34, 35)
Revised 2008 (Resolution 30)
Amended 2009 (Resolution 11)
Revised 2013 (Resolution 28)
Amended 2014 (Resolution 39)
Revised 2018 (Resolution 6)