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Abstract Multidetector computed tomography (CT) plays an
important role in the detection, risk stratification and progno-
sis evaluation of acute pulmonary embolism. This review will
discuss the technical improvements for imaging peripheral
pulmonary arteries, the methods of assessing pulmonary em-
bolism severity based on CT findings, a multidetector CT
technique for pulmonary embolism detection, and lastly,
how to avoid overutilization of CT pulmonary angiography
and overdiagnosis of pulmonary embolism.
Key Points
• We describe clinical prediction rules and D-dimers for pul-
monary embolism evaluation.

• Overutilization of CT pulmonary angiography and overdi-
agnosis of pulmonary embolism should be avoided.

• We discuss technical improvements for imaging peripheral
pulmonary arteries.

• Pulmonary embolism severity can be assessed based on CT
findings.

• We discuss multidetector CT techniques for pulmonary
embolism detection.

Keywords Pulmonary embolism . Tomography .

X-ray-computed . Angiography . Prognosis .

Low radiation dose

Introduction

Acute pulmonary embolism (PE) is a life-threatening disease,
ranking as the third most common acute cardiovascular disor-
der after myocardial infarction and stroke [1]. It is reported
that PE is fatal in up to 30 % of patients [2, 3]. One recent
study showed that a delay (>1.5 hour) in the direct communi-
cation of an acute PE diagnosis was significantly correlated
with delayed treatment initiation and higher risk of death with-
in 30 days [4]. Thus, timely and accurate diagnostic manage-
ment is required for patients with suspected PE.

Computed tomography pulmonary angiography (CTPA)
plays a pivotal role in the detection, risk stratification, prog-
nosis evaluation and follow-up of acute PE, and is now the
accepted reference standard for PE evaluation and one of the
most important steps in diagnostic algorithms of PE [5, 6].
However, CTPA is adding considerably to the population ion-
izing radiation burden [7]. A combination of pre-test predic-
tion evaluation and D-dimer testing permits for optimal use of
resources and minimisation of population radiation burden [6,
8]. In recent years, dual-energy CT has emerged to further
improve the detection of PE [9]. However, with the increas-
ingly widespread use of this test, overutilization of CTPA and
overdiagnosis of PE are becoming more tangible consider-
ations. Guidelines for appropriate use of CTPA have been
developed to address these concerns [10]. This review will
discuss the current prediction rules, the latest developments,
and the limitations and appropriate place for CTPA in the
assessment of patients with suspected acute PE.

Clinical prediction rules and D-dimer testing

Although clinical presentations of PE are nonspecific, a com-
bination of signs, symptoms and risk factors has been used to
assess the pre-test probability for PE. The Wells rule and the
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revised Geneva rule are the most widely used clinical predic-
tion rules (see Tables 1 and 2) [5, 6]. Use of either of these
rules is recommended in the guidelines [5, 6]; this is also a
necessary step in the diagnostic workflow of PE (Fig. 1).

D-dimers are frequently used in the diagnostic workup of
acute PE [5, 6, 11]. D-dimer assays have a high negative
predictive value; however, they have low specificity. It has
been demonstrated that it is safe to rule out PE on the basis
of a normal D-dimer test result and an unlikely pre-test clinical
probability [12–14]. Because D-dimer levels increase with
age, the new age-dependent D-dimer cutoff is recommended,
which is defined as a patient’s age x 10 μg/l in patients over
50 years of age [15], rather than the previously used “stan-
dard” of 500 μg/l in all patients [11].

Appropriate use of CTPA

CTPA is increasingly used in patients with suspected PE. Al-
though CTPA can also confirm or rule out alternative diagno-
ses in patients with suspected PE, this consideration may not
justify the increasing use of CTPA. Arguably, a negative
CTPA will expedite discharge and prevent a patient with
suspected PE from undergoing further downstream testing,
and more importantly, from receiving unnecessary
anticoagulation with the associated risk of complications
[16]. However, it is undeniable that more stringent adherence
to guidelines is needed to preserve the (comparative) effec-
tiveness of this test [10]. Adherence to recommendations by the PIOPED II investigators for the appropriate use of CTPA

is one option to reduce the number of CTPA examinations
[17]. Curbing overutilization and inappropriate use is also
the most important component of a population-based

Table 1 Wells rules for pulmonary embolism

Items Clinical decision rule points

Original
version

Revised
version

Previous PE or DVT 1.5 1

Heart rate≥100 beats/minutes 1.5 1

Surgery or immobilization within the past
four weeks

1.5 1

Haemoptysis 1 1

Active cancer 1 1

Clinical signs of DVT 3 1

Alternative diagnosis less likely than PE 3 1

Clinical probability

Three-level score

Low 0-1 N/A

Intermediate 2-6 N/A

High ≥7 N/A

Two-level score

PE unlikely 0-4 0-1

PE likely ≥5 ≥2

DVT=deep vein thrombosis; PE=pulmonary embolism

Table 2 Revised Geneva rules for pulmonary embolism

Items Clinical decision
rule points

Original
version

Revised
version

Previous PE or DVT 3 1

Heart rate

75–94 beats/minute 3 1

≥95 beats/minute 5 2

Surgery or fracture within the past month 2 1

Haemoptysis 2 1

Active cancer 2 1

Unilateral lower limb pain 3 1

Pain on lower limb deep venous palpation
and unilateral oedema

4 1

Age>65 years 1 1

Clinical probability

Three-level score

Low 0-3 0-1

Intermediate 4-10 2-4

High ≥11 ≥5
Two-level score

PE unlikely 0-5 0-2

PE likely ≥6 ≥3

DVT=deep vein thrombosis; PE=pulmonary embolism

Fig. 1 Recommended diagnostic algorithm for clinically suspected acute
PE. PE=pulmonary embolism; CTPA=CT pulmonary angiography. * D-
dimer cut-off of patients’ age x 10 μg/l is recommended in patients aged
over 50 years
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approach towards reducing collective radiation exposure from
medical imaging.

Risk-factor assessment should always be the first step in
evaluating suspected PE patients. Current guidelines [6, 18]
agree that assessment of pre-test probability is essential and
that CTPA is unnecessary when pre-test probability is low and
a sensitive D-dimer test result is negative. If pre-test probabil-
ity indicates “PE likely” or if D-dimer levels are elevated
above the threshold, the patient should be referred for CTPA
and further managed according to CTPA result (Fig. 1) [18,
19]. Using this algorithm, CTPA can be avoided in 20–30 %
of suspected PE patients [19].

While in the earlier days of CTPA it has been argued that
too many small PE may be missed, concerns of overdiagnosis
and overtreatment of PE are now being voiced, resulting from
the widespread use of advanced CT techniques with ever in-
creasing sensitivity for small, peripheral emboli. Increased PE
incidence with minimal change in overall mortality and no
significant change in 7-day or 14-day mortality has been ob-
served since the introduction of CTPA [10, 20]. Smaller
subsegmental emboli are more frequently detected with ad-
vanced CTPA techniques that include the computer-aided di-
agnostic (CAD) system and dual-energy CTPA.

“Overdiagnosis” is a concept that is currently quite liberal-
ly applied to a variety of tests, mainly in the realm of imaging
[21]; however, this term is ill defined. Stein et al. [22] believe
that it is safe to withhold treatment of subsegmental emboli if
the pulmonary–respiratory reserve is good, there is no evi-
dence of deep venous thrombosis on serial testing, the major
risk factor for PE was transient and is no longer present, there
is no history of central venous catheterization or atrial fibril-
lation, and the patient is willing to return for serial venous
ultrasound. Further research is needed in this field, ideally in
the form of a prospective randomized controlled trial.

Assessment of PE severity

Cardiac measurements of right heart strain

Accurate risk stratification based on CTPA findings is essen-
tial in patients with PE. CT findings in acute PE used for risk
stratification include right ventricular (RV) dilatation, inter-
ventricular septal bowing, embolus burden (Figs. 2 and 3),
and right heart embolus in transit (Fig. 4) [2, 23, 24]. Among
all above-mentioned parameters, RV dilatation is the most
important prognostic factor for PE [2, 23, 24]. An internation-
al prospective cohort study demonstrated that RV dysfunction
assessed by CTPA was an independent predictor for in-
hospital death or clinical deterioration in the overall popula-
tion and in haemodynamically stable patients [25]. Recent
meta-analyses also support the above-mentioned findings
[26, 27]. This supports the notion that CTPA can serve as a

single procedure to diagnose PE and to assess the short-term
risk of death, and thus guide the level of aggressiveness of
management and treatment.

The RV/left ventricle (LV) ratio is the most commonly used
marker for assessingRV dilatation in CTPA. Twomethods have
been proposed. One is to obtain multiplanar-reconstructed CT
images, with the aim of emulating the true four-chamber view
of echocardiography and cardiac MRI [28, 29]. The other is to
measure heart chambers on standard transverse images [30, 31].
The RVand LV diameters from inner wall to inner wall at their
widest point are measured on transverse sections at the level of
the tricuspid and mitral valves (Fig. 5), respectively [31]. Thus,
RV/LV diameter ratio can be calculated. Generally, patients
with an RV/LV ratio>1.0 on transverse CT images or an RV/
LV ratio>0.9 on true four-chamber reformatted views are
regarded as having RV dysfunction [28–32].

Another method for evaluating RV dysfunction is calculat-
ing RV/LV volume ratio. Retrospective electrocardiogram
(ECG)-gated CT acquisition was proposed to quantitatively
evaluate RV and LV volumes. Using retrospective ECG-
gated acquisition, triple-rule-out CT can simultaneously eval-
uate the presence of aortic dissection, acute PE and acute
myocardial infarction. However, retrospectively ECG-gated
CTPA can deliver more radiation exposure to the patients,
which needs be carefully weighted when adopting this
technique. RV volume measurements based on non-
ECG-gated CT acquisition was also recommended. One
study by Kang et al. showed that a RV/LV volume
ratio>1.2 on non–ECG-gated chest CT is a predictor
of early death in patients with acute PE, independent
of clinical risk factors and comorbidities [29].

Embolic burden measurements

Several semi-quantitative algorithms to measure the degree
and location of vascular obstruction in CTPA have been de-
veloped to evaluate PE severity. The most widely used algo-
rithms include the Quanadli score (known as the pulmonary
artery obstruction index) and the Mastora score [33, 34], mea-
sured on transverse images for everyday practitioners. Addi-
tionally, tools for quantitative blood embolus volume mea-
surement on CTPA have been developed to calculate embolus
burden [35]. However, the role of embolus burden assessment
in CTPA as an indicator of short-term mortality is debated.
Recently, one meta-analysis [36] indicated that localization of
emboli in the central pulmonary arteries was associated with
an increased risk of 30-day mortality, but no association be-
tween pulmonary artery obstruction index and 1-month or 3-
month mortality was observed. In the clinical setting, these
embolus burden scoring systems are rather complex and re-
quire an expert practitioner in the field of PE to perform the
evaluation. Thus, to date they are rather unsuitable for emer-
gency settings requiring rapid risk stratification.
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Dual-energy CT perfusion scoring

Analysis of the extent of perfusion impairment on dual-energy
CT appears to be a rational method to evaluate the hemody-
namic significance of PE, because some non-obstructive em-
boli do not cause hemodynamic changes [37–41]. Two perfu-
sion scoring methods have been proposed: grading the degree
of perfusion defect per lobe [37–39], and estimating the vol-
ume of perfusion defects relative to the total lung volume [40,
41]. These studies showed good correlations between perfu-
sion impairment and CT features of RV dysfunction, suggest-
ing that perfusion defects might be a predictor of clinical out-
come. However, further studies with larger cohorts are needed
to confirm the correlation between perfusion scores and clin-
ical outcome. In addition, simpler algorithms should be devel-
oped to render perfusion scoring feasible in the emergent set-
ting. Meinel et al. [42] have proposed one such algorithm
involving automated pulmonary perfused blood volume quan-
tification at dual-energy CTPA, for assessment of the severity
of acute PE. They found this algorithm to be capable of quan-
tifying global pulmonary perfused blood volume in acute PE
patients, which was inversely correlated with thrombus load,

Fig. 3 Isolated subsegmental pulmonary embolism in a 48-year-old
woman. Transverse contrast-enhanced CT image shows filling defect in
the right lower pulmonary artery (arrow)

Fig. 2 Central pulmonary
embolism in a 35-year-old man.
CTPA shown as transverse CT
image (a) and slab volume-
rendered images in oblique
transverse (b, c) and coronal (d)
orientation demonstrates filling
defects in both main pulmonary
arteries extending into lobar,
segmental and subsegmental
pulmonary arteries (arrows)
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laboratory parameters of PE severity, and the necessity for
intensive care unit admission [42].

Detection of peripheral PE

Although the clinical significance of peripheral PE, especially
isolated subsegmental PE, remains unclear, some clinical ob-
servations have indicated that subtle PE can progress into mas-
sive PE if no treatment is administered [43]. In patients with
risk factors for PE, the following are implicated for peripheral
PE progression into more severe disease: inadequate cardio-
pulmonary reserve, the presence of coexistent deep venous
thrombosis, a history of PE, and the extent of symptoms [5].

Computer-assisted detection

CAD systems for PE have been developed to help detect
endovascular emboli, especially in peripheral pulmonary arteries
(Fig. 6). Mostly used as a second reader, CAD can help detect
small emboli that are initially missed, increasing inexperienced
reader’s sensitivity for the detection of peripheral emboli
[44–46]. One recent study [47] demonstrated that CAD correctly
identified 77.4 % cases of acute PE previously missed in clinical
practice. For inexperienced practitioners, utilizing CAD as a sec-
ond reader can improve inter-observer agreement and diagnostic
confidence [44, 45]. However, the high rate of false-positive
detection marks per study (average 3.8–11.4), depending on the
image quality of CTPA, remains amajor concern [44–47]. Image
quality degradation can result from suboptimal contrast enhance-
ment of the pulmonary arteries, respiratory or cardiac motion,
and high image noise. Additionally, incorrect pulmonary vein
identification, and airway or parenchymal abnormality adjacent
to a pulmonary artery branch, can result in false positive PE
markings [48]. Although most false-positive CAD candidates
are easily identified, this increases the time required for image

interpretation. It was reported in Wittenberg et al.’s study [44]
that reading time was extended by amean of 22 seconds with the
use of CAD.Due to the limited available evidence and the risk of
false positive results, we do not recommend the routine use of
CAD systems for PE detection. However, CAD use can be con-
sidered as an aid for inexperienced readers, and in cases with a
strong clinical suspicion of PE initially interpreted as negative by
a radiologist [10, 48].

CT-based lung perfusion and/or ventilation/perfusion imaging

The feasibility of evaluating lung perfusion based on CT tech-
niques has long been recognized [40, 43, 49, 50]. More recently,
the potential of dual-energy CT to improve peripheral PE visu-
alization has been demonstrated in many experimental and clin-
ical studies (Fig. 7) [51–57]. However, abnormalities such as
small-airways disease and Takayasu’s arteritis can result in lung
perfusion defects that mimic PE [9, 23, 58]. Dual-energy CT
ventilation/perfusion imaging appears to alleviate this problem,
in analogy to ventilation/perfusion imaging in nuclear medicine
[59, 60]. Zhang et al.’s study demonstrated the feasibility of dual-
energy CT ventilation/perfusion imaging performed for detecting
PE, and demonstrated a greater ability to detect small pulmonary
emboli when compared with conventional CTPA (Fig. 8) [60].
Dual-energy CT perfusion imaging can becomewidely available
even in single-source CT systems, which can be used in patients
with clinically suspected PE; however, Xenon-enhanced dual-
energy CT ventilation imaging is complex and not routinely
available because of high radiation dose, complexity of acquisi-
tion, special equipment requirements, high cost and potential side
effects of Xenon gas [61].

Dual-energy CT lung vessel applications

Dual-energy CT-based “lung vessel” applications have been
developed to highlight iodine within small pulmonary vessels

Fig. 4 Pulmonary embolism and right ventricular thrombus in a 31-year-
old man. a) Transverse contrast-enhanced CTsections show emboli in the
outflow tract of the right ventricle (long arrow) and left pulmonary artery
(short arrow). b) Another transverse contrast-enhanced CT study

acquired 13 days later shows the emboli in the outflow tract of the right
ventricle (long arrow) and both pulmonary arteries (short arrow),
indicating embolus in transit
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and eliminate the ambiguity of low HU values caused by
intravascular emboli, low contrast enhancement, and partial

volume effects [62–64]. Some clinical and experimental stud-
ies have demonstrated that this technique can discriminate
enhanced from non-enhanced peripheral pulmonary arteries
(Fig. 7c), improving the visualization of small emboli
[62–65]. A recent experimental study [65] indicated that this
application had higher sensitivity for detecting subsegmental
pulmonary emboli than conventional CTPA. However, this
came at the price of decreased specificity and positive predic-
tive value. Thus, such application should be further refined to
improve accuracy and decrease the number of false positives
on CTPA.

Multidetector CT technique for PE detection

Reduced radiation dose strategies

Due to the increasingly prevalent use of CT worldwide, con-
cerns have been voiced over radiation exposure from CT and
the stochastic risk of subsequent cancer induction. Thus, low-
ering radiation dose is at the forefront of new developments in
medical imaging. Technical strategies of dose savings include
tube current modulation, individualized tube voltage selec-
tion, high-pitch scan modes, iterative reconstruction (IR), scan
length adjustment and collimator shutter action to avoid z-axis
overscanning in CTPA studies [66, 67].

Lowering tube voltage is one of the most common and
effective radiation reduction methods [68–72]. Substantial
dose reduction can be achieved by reducing tube voltage to
100, 80 or 70 kVp in adult patients compared with the stan-
dard of 120 kVp in CTPA studies (Fig. 9); however, image
quality and diagnostic accuracy were preserved. Automated
tube voltage selection algorithms have been developed to se-
lect the most dose-efficient kVp setting for an individual pa-
tient based on the patient's anatomy, as determined by the
planning range acquisition [73]. However, lowering tube volt-
age is not recommended for patients with a body mass index≥
30 kg/m2 because of high image noise and decreased image
quality.

Employing high-pitch acquisition is another radiation dose
reduction strategy in CTPA that is available on newer dual-
source CT systems [74]. Again, the high-pitch acquisition
technique is typically limited to normal-weight and mildly
overweight individuals. This is because X-ray tubes have
technical limits in the tube current they can provide, and
may not allow the emission of sufficient photons during the
very short acquisition time of high-pitch protocols to achieve
good image quality in obese patients. Compared with a
standard-pitch protocol, Hou et al. [74] showed that a 47 %
radiation dose reduction can be achieved with high-pitch
CTPA. In addition to reducing radiation dose, high-pitch im-
age acquisition also improves temporal resolution, making it
possible to image patients unable to complete a sufficient

Fig. 5 Measurements of right ventricle and left ventricle diameters in a
68-year-old woman with multiple pulmonary emboli. a and b) Regular
contrast-enhanced transverse CT images illustrate the measurements of
right and left ventricular diameters in two different sections. c)
Reformatted true four-chamber CT image illustrates measurements of
the right and left ventricular diameters in one plane
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breath hold, reducing motion artefacts, and improving diag-
nostic evaluation of cardiovascular structures [75]. However,
use of high-pitch technique will increase image noise; thus, IR
is recommended when using this technique.

Combining low tube voltage, high-pitch scan modes and
other dose-saving techniques such as IR, tube current modu-
lation technique, automatic tube voltage selection, and opti-
mized scanning range will further lower radiation dose while
maintaining diagnostic image quality in patients with a body
mass index<30 kg/m2. However, it should be noted that the
combined use of low tube voltage and high-pitch techniques
can substantially increase image noise and lead to deteriora-
tion in image quality, especially in larger patients. This can be
remedied by employing the most recent generation of dual-

source CT systems with substantially increased x-ray tube
power, or with the use an IR algorithm to reduce image noise
[76]. Our data show that 80 kVp high-pitch CTPAwith IR can
reduce radiation dose by 50.3 % without image quality dete-
rioration compared to 100 kVp standard-pitch CTPAwith fil-
tered back projection (Fig. 9) [75].

Reduced contrast medium volume

Although recent controlled studies have demonstrated that the
risk of contrast-induced nephropathy with intravenously
injected contrast media at CT may be greatly overstated [77,
78], lowering the volume of iodinated contrast material is
desirable to further minimize this potential risk. A lower tube

Fig. 6 Computer assisted detection for pulmonary embolism in a 20-year-old man. a and b) The computer assisted detection system indicates a filling
defect in a right lower lung lobe segmental pulmonary artery (P2)

Fig. 7 Dual-energy CT lung perfusion imaging and lung vessels
application in a 54-year-old woman with suspected pulmonary
embolism. a) Transverse contrast-enhanced CT image shows filling
defect in a subsegmental pulmonary artery (arrow) in the left lower
lobe. b) Transverse lung vessels application image shows that the

corresponding pulmonary artery is color-coded as red (arrow),
indicating the dual-energy tissue signature of thrombotic material. c)
The dual-energy CT lung perfusion image shows the corresponding
perfusion defect (arrow) in the left lower lobe
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voltage increases the attenuation of iodine resulting in in-
creased contrast enhancement. This can be attributed to de-
creased tissue penetration and higher photoelectric effect of
lower energy x-rays, thus providing the potential to reduce

contrast material volume [79, 80]. However, lowering tube
voltage should be employed on a per-patient basis according
to patient body mass index or by means of automated tube
voltage selection systems, in order to avoid a significant

Fig. 8 Dual-energy CT lung ventilation/perfusion imaging in a 19-year-
old woman with suspected pulmonary embolism. a) Transverse dual-
energy CT lung perfusion image shows multiple perfusion defects in
the right lower lobe and the left lung (arrows). Multiple filling defects

within pulmonary arteries were present but not shown in this image. b)
Transverse dual-energy CT lung ventilation image shows the nearly
normal xenon distribution indicating normal ventilatory function

Fig. 9 Comparison of 70, 80 and 100 kVpCT pulmonary angiography in
three patients. a) Transverse contrast-enhanced CT image and b) oblique
maximum intensity projection images acquired with 70 kVp and high
pitch scan mode (2) in a 26-year-old woman. c) Transverse contrast-
enhanced CT image and d) coronal reformatted CT image acquired
with 80 kVp and high pitch scan mode (2) in a 76-year-old man. Note

the filling defect in a right upper lobe pulmonary artery (arrow in Panel c
and long arrow in Panel D) and corresponding lung infarct (short arrow
in Panel d). e) Transverse contrast-enhanced CT study and F) maximum
intensity projection of study generated with 100 kVp and standard pitch
factor (1.2) in a 42-year-old woman. These images were acquired with a
second-generation dual-source CT system
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increase in image noise [75, 81, 82]. Increasing pitch provides
an additional opportunity for iodine load reduction, as acqui-
sition of the entire chest takes only 1 sec or less. As little as
20 ml of contrast material can be used to achieve sufficient
image quality if combined with IR (Fig. 9) [75]. Using dual-
energy CT, iodine load can be reduced when virtual mono-
chromatic imaging extrapolated to photon energies of 50 or
70 keV is used [83–85]. Saade et al. reported that appropriate
contrast material volume can be acquired with use of a patient-
specific approach; however, this approach is complex in the
clinical setting, because it requires the calculation of contrast
material volume according to the equation [86]. Thus, it is
recommended that a combination of automatic tube voltage
selection and high pitch technique is used to reduce contrast
material volume in routine clinical practice.

Conclusions

Multidetector CTPA can be performed in dual-energy mode,
and thus simultaneously enables morphological assessment of
the heart-lung axis and provides functional information on
pulmonary perfusion and ventilation. Multidetector CT sys-
tems employ various strategies that have substantially de-
creased radiation dose and contrast material volume required
for CTPA, while maintaining image quality. Overutilization of
CTPA resulting in potential overtreatment of clinically insig-
nificant PE is an increasing concern, and requires adherence to
and refinement of established clinical prediction rules and
algorithms for the appropriate use of this imaging test.
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